scholarly journals Study of antibacterial, anti-proliferative and pro-apoptotic potential of the cell extracts of endophytic fungi and bacteria isolated from Pajanelia longifolia (Willd.) K. Schuman

2021 ◽  
Vol 8 (3) ◽  
Author(s):  
G A Gowthami ◽  
Subhankar Das ◽  
Yalpi Karthik ◽  
I K Manjula

Endophytes contribute to the synthesis of significant metabolites in symbiotic association with their host plants. On considering the medicinal importance of the prominent tree species Pajanelia longifolia (Willd.) K. Schuman, the study was conducted to isolate and identify the endophytic bacteria and fungi for their bioactivity. The isolation of endophytic bacteria and fungi were performed by surface sterilisation of the stem and leaf samples of P. longifolia. The obtained bacterial and fungal endophytic isolates were maintained in nutrient agar and Potato Dextrose Agar (PDA) media and were examined for colony morphology and microscopic appearances with varied biochemical characterisations. Furthermore, both the fungal and bacterial isolates were subjected to solvent extractions to evaluate antibacterial activity. Also, anti-proliferative effects due to apoptotic induction by the endophytic fungal extracts were checked against proliferative yeast cells. Moreover, endophytic bacteria belonging to Enterococcaceae had shown antibacterial activity against Salmonella species. In the present study, fungal species belonging to Cladosporium predominantly found to inhabit as endophytic fungi in the plant samples. Also, this particular fungus among other selected endophytic fungi attributed to causing effective anti-proliferative activity. The endophytic bacteria belonging to Enterococcus and Micrococcus genera showed significant antimicrobial activity against Salmonella typhimurium (ATCC 23564).

2020 ◽  
Author(s):  
Lei Tian ◽  
Xiaolong Lin ◽  
Li Ji ◽  
Jingjing Chang ◽  
Xiujun Li ◽  
...  

Abstract Background: Rice, which serves as a staple food for more than half of the world’s population, has been planted all over the world. The hybridization of wild and cultivated rice has helped rice gain resistance to variable environmental conditions. Endophytic microbiomes have been known to be transferred along with the plants. However, the endophytic bacteria or fungi for the wild and cultivated rice, and their first crossbred generation have not been illustrated until now. Results: In this study, we systematically compared the endophytic microbial community structures of Asian and African wild and cultivated rice species with their F1 offsprings. Results showed that both African and Asian wild rice controls more root endophytic fungi than cultivated rice in their first generation after crossbreeding. Furthermore, network analysis of the bacterial and fungal operational taxonomic units showed that Asian and African wild rice species can cluster and have more significant correlations than cultivated rice fungal species. The core bacterial species that connected wild rice with its F1 offsprings was Acidovorax, wherea the core bacterial species that linked cultivated rice to its F1 offsprings was Bradyrhizobium; and the core fungal species that can connect in wild rice and the F1 offsprings were Pleosporales, Myrothecium and Bullera, while the core fungal species that can connect in cultivated rice was those belonging to the Dendroclathra genus.Conclusions: This study may provide the theoretical significance of the endophytic bacteria and fungi for wild and cultivated rice along with their F1 offsprings.


2019 ◽  
Vol 5 (2) ◽  
Author(s):  
Angga Puja Asiandu ◽  
Hary Widjajanti ◽  
Elisa Nurnawati

Endophytic fungi are fungi which live inside the host plant tissue and have been undergone a horizontal gene transfer process. Endophytic fungi are able to synthesize the same bioactive compounds which synthesized by their host plants. The host plant used in this research was dragon’s scales fern (Pyrrosia piloselloides (L.) M.G. Price). Dragon’s scales fern produces various of bioactive compounds which used as antibacterial agents such as polyphenols. This research was aimed to obtain endophytic fungi isolates from trophophyll fronds and sporophyll fronds of dragon’s scales fern, to determine the antibacterial activity of the secondary metabolite extracts of endophytic fungi, to determine the Minimum Inhibitory Concentration (MIC), to determine the characteristics of the endophytic fungi isolates which potentially as antibacterial source. Based on the research, 13 endophytic fungi isolates were obtained from dragon’s scales fern fronds consist of 5 isolates from trophophyll fronds and 8 isolates from sporophyll fronds. The antibacterial activity test showed that the extract of secondary metabolites of the isolate DTP2 had the highest inhibition zone diameter against E.coli 14.82 ± 4.05 mm, DTP4 against S.aureus 8.80 ± 0.03 mm and DSP4 against S.dysentriae 10.15 ± 0.36 mm. MIC of ethyl acetate extracts of secondary metabolites of isolate DTP2 against E.coli was 125 µg/mL, DTP4 against S.aureus was 125 µg/mL and DSP4 against S.dysentriae was 31.25 µg/mL. The endophytic fungi isolate DTP2 identified as Aureobasidium melanogenum, DTP4 identified as Penicillium alliisativi and DSP4 identified as Aspergillus flocculosus.


2021 ◽  
Vol 8 ◽  
Author(s):  
Valeria Franco-Franklin ◽  
Sandra Moreno-Riascos ◽  
Thaura Ghneim-Herrera

Plant endophytic bacteria have received special attention in recent decades for their ability to improve plant response to multiple stresses. A positive effect of endophytes on plant’s ability to cope with drought, salinity, nitrogen deficiency, and pathogens have already been demonstrated in numerous studies, and recently this evidence was consolidated in a meta-analysis of published data. Endophytic bacteria have also been implicated in increasing resistance to heavy metals in plants; despite the important biotechnological applications of such effect in heavy metal bioremediation and agriculture, efforts to systematically analyze studies in this field have been limited. In this study, we address this task with the objective of establishing whether the findings made for other types of stresses extend to the response to heavy metals. Specifically, we seek to establish if plant inoculation with plant-growth promoting endophytic bacteria have an impact on their tolerance to heavy metal stress? We carried out a meta-analysis of the effect size of inoculation with endophytic bacteria on the host plant biomass in response to heavy metal stress (aluminum, arsenic, cadmium, copper, chromium, manganese, nickel, lead, and zinc), which included 27 (from 76 published in the last 10 years) studies under controlled conditions that evaluated 19 host plants and 20 bacterial genera. Our results suggest that endophytic bacteria increase the biomass production of host plants subjected to different heavy metals, indicating their effectiveness in protecting plants from a wide range of metal toxicities. Stress mitigation by the bacteria was similar among the different plant groups with the exception of non-accumulating plants that benefit most from the symbiotic association. Host identity and heavy metal concentration seem to influence the effect of the bacteria. Our analysis revealed that bacterial consortia provide the greatest benefit although the most common biotechnological applications are not directed towards them, and support the value of endophytic bacteria as an alternative to mitigate heavy metal stress in a wide variety of hosts.


Author(s):  
Syarifah Ab Rashid ◽  
Chean Ring Leong ◽  
Md Abu Taher ◽  
Nur Rifqah Attifah Rosman ◽  
Noor Faizah Che Harun ◽  
...  

From the tropics to the arctic, almost all living plants on the earth are resided by endophytic fungi. The microorganism can be found near intercellular or intracellular tissues and cause void adverse symptoms of infection. Endophytes and host plants are synergistically protecting each other. As the host provides nutrients, the endophytes serve the host by activating their defense mode against parasites and pests. A search for alternative drugs, mostly from natural sources, is in ascending trends due to the increase of lethal diseases. This review emphasizes the significance of several endophytic fungi as a foundation for novel bioactive sources which might be advantageous for human health. The communication between the endophytic fungi and their host has generated numerous unique bioactive metabolites from different biosynthetic pathways. These include ketones, polyketides, alkaloids, non-alkaloids, acids, coumarins, etc., which comprise numerous potent biological activities including antimicrobial, anticancer, antioxidant, insecticidal, antidiabetic, immunosuppressive, anti-arthritis, anti-inflammatory, and anti hypercholesterolemic. Around 1.5 million endophytic fungal species have been estimated. However, to date, only 100,000 species are reported. Thus, a few isolated compounds and their biological activities have been opted in this current review. All compounds were discovered from endophytic fungi, which resided on various host plants, particularly from algae to a higher family plant such as mangroves.


2020 ◽  
Vol 27 (11) ◽  
pp. 1836-1854 ◽  
Author(s):  
Elena Ancheeva ◽  
Georgios Daletos ◽  
Peter Proksch

Background: Endophytes represent a complex community of microorganisms colonizing asymptomatically internal tissues of higher plants. Several reports have shown that endophytes enhance the fitness of their host plants by direct production of bioactive secondary metabolites, which are involved in protecting the host against herbivores and pathogenic microbes. In addition, it is increasingly apparent that endophytes are able to biosynthesize medicinally important “phytochemicals”, originally believed to be produced only by their host plants. Objective: The present review provides an overview of secondary metabolites from endophytic fungi with pronounced biological activities covering the literature between 2010 and 2017. Special focus is given on studies aiming at exploration of the mode of action of these metabolites towards the discovery of leads from endophytic fungi. Moreover, this review critically evaluates the potential of endophytic fungi as alternative sources of bioactive “plant metabolites”. Results: Over the past few years, several promising lead structures from endophytic fungi have been described in the literature. In this review, 65 metabolites are outlined with pronounced biological activities, primarily as antimicrobial and cytotoxic agents. Some of these metabolites have shown to be highly selective or to possess novel mechanisms of action, which hold great promises as potential drug candidates. Conclusion: Endophytes represent an inexhaustible reservoir of pharmacologically important compounds. Moreover, endophytic fungi could be exploited for the sustainable production of bioactive “plant metabolites” in the future. Towards this aim, further insights into the dynamic endophyte - host plant interactions and origin of endophytic fungal genes would be of utmost importance.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1276
Author(s):  
Olga A. Aleynova ◽  
Andrey R. Suprun ◽  
Nikolay N. Nityagovsky ◽  
Alexandra S. Dubrovina ◽  
Konstantin V. Kiselev

Plant endophytes are known to alter the profile of secondary metabolites in plant hosts. In this study, we identified the main bacterial and fungal representatives of the wild grape Vitis amurensis Rupr. microbiome and investigated a cocultivation effect of the 14 endophytes and the V. amurensis cell suspension on biomass accumulation and stilbene biosynthesis. The cocultivation of the V. amurensis cell culture with the bacteria Agrobacterium sp., Bacillus sp., and Curtobacterium sp. for 2 weeks did not significantly affect the accumulation of cell culture fresh biomass. However, it was significantly inhibited by the bacteria Erwinia sp., Pantoea sp., Pseudomonas sp., and Xanthomonas sp. and fungi Alternaria sp., Biscogniauxia sp., Cladosporium sp., Didymella sp. 2, and Fusarium sp. Cocultivation of the grapevine cell suspension with the fungi Didymella sp. 1 and Trichoderma sp. resulted in cell death. The addition of endophytic bacteria increased the total stilbene content by 2.2–5.3 times, while the addition of endophytic fungi was more effective in inducing stilbene accumulation by 2.6–16.3 times. The highest content of stilbenes in the grapevine cells cocultured with endophytic fungi was 13.63 and 13.76 mg/g of the cell dry weight (DW) after cultivation with Biscogniauxia sp. and Didymella sp. 2, respectively. The highest content of stilbenes in the grapevine cells cocultured with endophytic bacteria was 4.49 mg/g DW after cultivation with Xanthomonas sp. The increase in stilbene production was due to a significant activation of phenylalanine ammonia lyase (PAL) and stilbene synthase (STS) gene expression. We also analyzed the sensitivity of the selected endophytes to eight antibiotics, fluconazole, and trans-resveratrol. The endophytic bacteria were sensitive to gentamicin and kanamycin, while all selected fungal strains were resistant to fluconazole with the exception of Cladosporium sp. All endophytes were tolerant of trans-resveratrol. This study showed that grape endophytes stimulate the production of stilbenes in grape cell suspension, which could further contribute to the generation of a new stimulator of stilbene biosynthesis in grapevine or grape cell cultures.


2021 ◽  
Vol 9 (5) ◽  
pp. 1050
Author(s):  
Jing Zhu ◽  
Xiang Sun ◽  
Zhi-Dong Zhang ◽  
Qi-Yong Tang ◽  
Mei-Ying Gu ◽  
...  

Endophytic bacteria and fungi colonize plants that grow in various types of terrestrial and aquatic ecosystems. Our study investigates the communities of endophytic bacteria and fungi of halophyte Kalidium schrenkianum growing in stressed habitats with ionizing radiation. The geochemical factors and radiation (at low, medium, high level and control) both affected the structure of endophytic communities. The bacterial class Actinobacteria and the fungal class Dothideomycetes predominated the endophytic communities of K. schrenkianum. Aerial tissues of K. schrenkianum had higher fungal diversity, while roots had higher bacterial diversity. Radiation had no significant effect on the abundance of bacterial classes. Soil pH, total nitrogen, and organic matter showed significant effects on the diversity of root endophytes. Radiation affected bacterial and fungal community structure in roots but not in aerial tissues, and had a strong effect on fungal co-occurrence networks. Overall, the genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments, however negative correlations were found between endophytic bacteria and fungi in the plant. The genetic diversity of both endophytic bacteria and fungi was higher in radioactive environments. Our findings suggest that radiation affects root endophytes, and that the endophytes associated with aerial tissues and roots of K. schrenkianum follow different mechanisms for community assembly and different paradigms in stress response.


1986 ◽  
Vol 6 (7) ◽  
pp. 2382-2391
Author(s):  
C A Kaiser ◽  
D Botstein

Nine mutations in the signal sequence region of the gene specifying the secreted Saccharomyces cerevisiae enzyme invertase were constructed in vitro. The consequences of these mutations were studied after returning the mutated genes to yeast cells. Short deletions and two extensive substitution mutations allowed normal expression and secretion of invertase. Other substitution mutations and longer deletions blocked the formation of extracellular invertase. Yeast cells carrying this second class of mutant gene expressed novel active internal forms of invertase that exhibited the following properties. The new internal proteins had the mobilities in denaturing gels expected of invertase polypeptides that had retained a defective signal sequence and were otherwise unmodified. The large increase in molecular weight characteristic of glycosylation was not seen. On nondenaturing gels the mutant enzymes were found as heterodimers with a normal form of invertase that is known to be cytoplasmic, showing that the mutant forms of the enzyme are assembled in the same compartment as the cytoplasmic enzyme. All of the mutant enzymes were soluble and not associated with the membrane components after fractionation of crude cell extracts on sucrose gradients. Therefore, these signal sequence mutations result in the production of active internal invertase that has lost the ability to enter the secretory pathway. This demonstrates that the signal sequence is required for the earliest steps in membrane translocation.


1994 ◽  
Vol 14 (11) ◽  
pp. 7322-7330 ◽  
Author(s):  
N Iizuka ◽  
L Najita ◽  
A Franzusoff ◽  
P Sarnow

Translation extracts were prepared from various strains of Saccharomyces cerevisiae. The translation of mRNA molecules in these extracts were cooperatively enhanced by the presence of 5'-terminal cap structures and 3'-terminal poly(A) sequences. These cooperative effects could not be observed in other translation systems such as those prepared from rabbit reticulocytes, wheat germ, and human HeLa cells. Because the yeast translation system mimicked the effects of the cap structure and poly(A) tail on translational efficiency seen in vivo, this system was used to study cap-dependent and cap-independent translation of viral and cellular mRNA molecules. Both the 5' noncoding regions of hepatitis C virus and those of coxsackievirus B1 conferred cap-independent translation to a reporter coding region during translation in the yeast extracts; thus, the yeast translational apparatus is capable of initiating cap-independent translation. Although the translation of most yeast mRNAs was cap dependent, the unusually long 5' noncoding regions of mRNAs encoding cellular transcription factors TFIID and HAP4 were shown to mediate cap-independent translation in these extracts. Furthermore, both TFIID and HAP4 5' noncoding regions mediated translation of a second cistron when placed into the intercistronic spacer region of a dicistronic mRNA, indicating that these leader sequences can initiate translation by an internal ribosome binding mechanism in this in vitro translation system. This finding raises the possibility that an internal translation initiation mechanism exists in yeast cells for regulated translation of endogenous mRNAs.


Sign in / Sign up

Export Citation Format

Share Document