scholarly journals Comprehension of climatic and occupational heat stress amongst agricultural advisers and workers in Slovenia

2017 ◽  
Vol 109 (3) ◽  
pp. 545 ◽  
Author(s):  
Tjaša POGAČAR ◽  
Zalika ČREPINŠEK ◽  
Lučka KAJFEŽ BOGATAJ ◽  
Lars NYBO

<p>Climate changes and the associated higher frequency of heat waves in Middle-European countries will aggravate occupational heat stress experienced by Slovenian workers. Appropriate behavioral adaptations are important coping strategies and it is pertinent to establish if knowledge among advisers and workers is sufficient and identify the symptoms experienced by workers. Therefore a survey including 230 farmers and 86 agricultural advisers was completed. Thermal comfort ranged from hot to extremely hot for 85 ± 5 % of farmers working outside and heat stress had a negative impact on well-being (74 ± 6 %), productivity (68 ± 6 %) and concentration (34 ± 6 %). Reported symptoms were excessive sweating (84 ± 5 %), thirst (81 ± 5 %), and tiredness (59 ± 6 %). Women had a higher prevalence of headache (64 ± 10 %) compared to males (47 ± 8 %), higher frequency of fatigue (69 ± 10 vs 56 ± 8 %), and incidents with nausea or vomiting (19 ± 8 vs 9 ± 5 %). 81 ± 4 % of the responders reported that more time is required to complete tasks when the weather is hot. Nevertheless, 61 ± 6 % of farmers have never been informed of the impacts of heat stress and 29 ± 10 % of the agricultural advisers does not include this information in their guidance. This emphasizes the need for increased information and implementation of feasible solutions to mitigate the negative impact of heat stress on workers in the agricultural sector.</p>

Author(s):  
Tjaša Pogačar ◽  
Zala Žnidaršič ◽  
Lučka Kajfež Bogataj ◽  
Andreas Flouris ◽  
Konstantina Poulianiti ◽  
...  

Changing patterns of heat waves are part of the global warming effect and the importance of changes is reinforced by their negative impact on society. Firstly, heat waves were analyzed in Brnik (Slovenia) and Larisa (Greece) in the period 1981–2017 to reflect the environment which workers are exposed to. Secondly, outdoor workers (70 from Greece, 216 from Slovenia) provided a self-assessment of heat stress. The heat wave timeline is presented as an effective way of illustrating long-term changes in heat waves’ characteristics for various stakeholders. In both countries, workers assessed as significant the heat stress impact on productivity (Greece 69%, Slovenia 71%; p > 0.05), and in Slovenia also on well-being (74%; p < 0.01). The main experienced symptoms and diseases were thirst (Greece 70%, Slovenia 82%; p = 0.03), excessive sweating (67%, 85%; p = 0.01), exhaustion (51%, 62%; p > 0.05) and headache (44%, 53%; p > 0.05). The most common way to reduce heat stress was drinking more water (Greece 64%, Slovenia 82%; p = 0.001). Among the informed workers, the prevalent source of information was discussions. Therefore, educational campaigns are recommended, together with the testing of the efficiency of mitigation measures that will be proposed on the Heat-Shield project portal.


Author(s):  
Karin Lundgren Kownacki ◽  
Chuansi Gao ◽  
Kalev Kuklane ◽  
Aneta Wierzbicka

Climate change increases the risks of heat stress, especially in urban areas where urban heat islands can develop. This literature review aims to describe how severe heat can occur and be identified in urban indoor environments, and what actions can be taken on the local scale. There is a connection between the outdoor and the indoor climate in buildings without air conditioning, but the pathways leading to the development of severe heat levels indoors are complex. These depend, for example, on the type of building, window placement, the residential area’s thermal outdoor conditions, and the residents’ influence and behavior. This review shows that only few studies have focused on the thermal environment indoors during heat waves, despite the fact that people commonly spend most of their time indoors and are likely to experience increased heat stress indoors in the future. Among reviewed studies, it was found that the indoor temperature can reach levels 50% higher in °C than the outdoor temperature, which highlights the importance of assessment and remediation of heat indoors. Further, most Heat-Health Warning Systems (HHWS) are based on the outdoor climate only, which can lead to a misleading interpretation of the health effects and associated solutions. In order to identify severe heat, six factors need to be taken into account, including air temperature, heat radiation, humidity, and air movement as well as the physical activity and the clothes worn by the individual. Heat stress can be identified using a heat index that includes these six factors. This paper presents some examples of practical and easy to use heat indices that are relevant for indoor environments as well as models that can be applied in indoor environments at the city level. However, existing indexes are developed for healthy workers and do not account for vulnerable groups, different uses, and daily variations. As a result, this paper highlights the need for the development of a heat index or the adjustment of current thresholds to apply specifically to indoor environments, its different uses, and vulnerable groups. There are several actions that can be taken to reduce heat indoors and thus improve the health and well-being of the population in urban areas. Examples of effective measures to reduce heat stress indoors include the use of shading devices such as blinds and vegetation as well as personal cooling techniques such as the use of fans and cooling vests. Additionally, the integration of innovative Phase Change Materials (PCM) into facades, roofs, floors, and windows can be a promising alternative once no negative health and environmental effects of PCM can be ensured.


Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 34 ◽  
Author(s):  
Ali Raza ◽  
Ali Razzaq ◽  
Sundas Mehmood ◽  
Xiling Zou ◽  
Xuekun Zhang ◽  
...  

Agriculture and climate change are internally correlated with each other in various aspects, as climate change is the main cause of biotic and abiotic stresses, which have adverse effects on the agriculture of a region. The land and its agriculture are being affected by climate changes in different ways, e.g., variations in annual rainfall, average temperature, heat waves, modifications in weeds, pests or microbes, global change of atmospheric CO2 or ozone level, and fluctuations in sea level. The threat of varying global climate has greatly driven the attention of scientists, as these variations are imparting negative impact on global crop production and compromising food security worldwide. According to some predicted reports, agriculture is considered the most endangered activity adversely affected by climate changes. To date, food security and ecosystem resilience are the most concerning subjects worldwide. Climate-smart agriculture is the only way to lower the negative impact of climate variations on crop adaptation, before it might affect global crop production drastically. In this review paper, we summarize the causes of climate change, stresses produced due to climate change, impacts on crops, modern breeding technologies, and biotechnological strategies to cope with climate change, in order to develop climate resilient crops. Revolutions in genetic engineering techniques can also aid in overcoming food security issues against extreme environmental conditions, by producing transgenic plants.


Geofizika ◽  
2020 ◽  
Vol 36 (2) ◽  
pp. 131-152
Author(s):  
Joanna Jędruszkiewicz ◽  
Joanna Wibig

This work gives an overview on how the projected changes in the extremes in Poland might impact human health and economy. For that purpose, statisti-cally corrected data from 7 regional climate models were used. A significant increase of extreme hot events (i.e. heat waves, tropical nights) is projected for Central and Southern Poland for the end of the 21st century which might seri-ously affect a society living in large urban areas. Less extreme cold events im-prove thermal comfort in winter. The negative impact of the warming will affect energy systems with higher demand for electricity in summer and agriculture: an earlier beginning of the growing season and flower blooming will enhance the risk of frost damages in spring, whereas excessive heat will reduce yields in summer. Polish tourism should benefit from higher thermal comfort (except for hot July and August in the far future and warming in the winter season bring-ing snow cover depletion in the near future).


Author(s):  
Tjaša Pogačar ◽  
Zala Žnidaršič ◽  
Lučka Kajfež Bogataj ◽  
Zalika Črepinšek

Occupational heat stress has an important negative impact on the well-being, health and productivity of workers and should; therefore, be recognized as a public health issue in Europe. There is no comprehensive heat health warning system in Slovenia combining public health measures with meteorological forecasts. The aim of this research was to provide insight into the development of such a system in Slovenia, turning the communication from the current meteoalarm into a broader system that has more information for different social groups. To achieve this goal, the following steps were used: Analysis of summer temperatures and issued meteoalarms, a survey of the general knowledge about heat among the public, organization and management of two stakeholder symposia, and a final survey on workers’ opinions on heat stress and measures, supplemented by interviews with employers. Summer average daily temperature distributions in Slovenia changed during the investigated period (1961–2019) and the mean values increased over time by 2–3 °C. Additionally, the number of days with fulfilled yellow (potentially dangerous) and especially orange (dangerous) meteoalarm conditions increased significantly after 1990. The survey of the general public about heat stress and warnings showed that efforts to raise awareness of heat issues need to be intensified and that public health measures should effectively target vulnerable groups. Stakeholder symposia and further surveys have shown that awareness and understanding of the negative effects of heat stress on health and productivity are still quite low, so effective ways of disseminating information to different sectors while striking the best balance between efficiency, feasibility and economic cost have to be found.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1144
Author(s):  
Dimitrios Antoniadis ◽  
Nikolaos Katsoulas ◽  
Dimitris Κ. Papanastasiou

Urban outdoor thermal conditions, and its impacts on the health and well-being for the city inhabitants have reached increased attention among biometeorological studies during the last two decades. Children are considered more sensitive and vulnerable to hot ambient conditions compared to adults, and are affected strongly by their thermal environment. One of the urban outdoor environments that children spend almost one third of their school time is the schoolyard. The aims of the present manuscript were to review studies conducted worldwide, in order to present the biophysical characteristics of the typical design of the urban schoolyard. This was done to assess, in terms of bioclimatology, the interactions between the thermal environment and the children’s body, to discuss the adverse effects of thermal environment on children, especially the case of heat stress, and to propose measures that could be applied to improve the thermal environment of schoolyards, focusing on vegetation. Human thermal comfort monitoring tools are mainly developed for adults, thus, further research is needed to adapt them to children. The schemes that are usually followed to design urban schoolyards create conditions that favour the exposure of children to excessive heat, inducing high health risks to them. The literature survey showed that typical urban schoolyard design (i.e., dense surface materials, absence of trees) triggered high surface temperatures (that may exceed 58 °C) and increased absorption of radiative heat load (that may exceed 64 °C in terms of Mean Radiant Temperature) during a clear day with intense solar radiation. Furthermore, vegetation cover has a positive impact on schoolyard’s microclimate, by improving thermal comfort and reducing heat stress perception of children. Design options for urban schoolyards and strategies that can mitigate the adverse effects of heat stress are proposed with focus on vegetation cover that affect positively their thermal environment and improve their aesthetic and functionality.


2015 ◽  
pp. 147-153 ◽  
Author(s):  
B. Frumkin

The article analyzes the consequences of the sanctions introduced by the West as well as by Russia (counter-sanctions) for Russian agri-food complex. The aftereffects are analyzed in three dimensions - foreign trade, production and market-consuming. The author concludes that sanctions have a negative impact on the availability of food for low-income population groups and on the qualityof some products and yet have not had explicitly positive effect on national producers. To achieve a positive effect for agri-food complex and well-being of the bulk of the population, additional political steps to improve the state supporting and functioning of the institutes of agri-food complex are needed.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 58-58
Author(s):  
Josh Selsby ◽  
Shanthi Ganesan ◽  
Robert Rhoads ◽  
Lance H Baumgard

Abstract Heat stress continues to undermine efficient meat production and meat quality. It also jeopardizes human and animal health and wellbeing, regionalizes animal production, and threatens food security. Environmental models predict more frequent and severe heat waves, even in areas previously considered temperate indicating this problem will continue to have a progressively expanding, deleterious impact on agricultural productivity. Despite the broad, negative impact of heat stress little is known about underlying mechanisms leading to phenotypic outcomes. Because of its mass and energetic demands, skeletal muscle contributes greatly to regulation of systemic metabolism. We have discovered heat stress causes robust but transient oxidative stress and activation of apoptotic signaling in skeletal muscle in as little as two hours. Interestingly, these declined linearly through six hours concomitant with markers of increased autophagy and mitophagy, which would facilitate the removal of damaged mitochondria. Continued heating through 24 h causes a resumption of oxidative stress and autophagic dysfunction with an accumulation of autophagosomes and mitochondria. As mitochondrial injury and autophagic dysregulation appear to be key mediators of hyperthermic muscle dysfunction we propose a model that posits progressive mitochondrial injury leads to production of free radicals that overwhelms antioxidant systems and impairs autophagy facilitating accumulation of damaged, pro-oxidant mitochondria. Ultimately, these aforementioned changes may reduce efficient protein accretion. Our current work is focused on stimulating autophagy and protecting mitochondria during heat stress in an effort to maintain efficient muscle growth.


Agronomy ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 99 ◽  
Author(s):  
Kevin Begcy ◽  
Anna Weigert ◽  
Andrew Egesa ◽  
Thomas Dresselhaus

Heat stress frequently imposes a strong negative impact on vegetative and reproductive development of plants leading to severe yield losses. Wheat, a major temperate crop, is more prone to suffer from increased temperatures than most other major crops. With heat waves becoming more intense and frequent, as a consequence of global warming, a decrease in wheat yield is highly expected. Here, we examined the impact of a short-term (48 h) heat stress on wheat imposed during reproduction at the pollen mitosis stage both, at the physiological and molecular level. We analyzed two sets of summer wheat germplasms from Australia (Kukri, Drysdale, Gladius, and RAC875) and Europe (Epos, Cornetto, Granny, and Chamsin). Heat stress strongly affected gas exchange parameters leading to reduced photosynthetic and transpiration rates in the European cultivars. These effects were less pronounced in Australian cultivars. Pollen viability was also reduced in all European cultivars. At the transcriptional level, the largest group of heat shock factor genes (type A HSFs), which trigger molecular responses as a result of environmental stimuli, showed small variations in gene expression levels in Australian wheat cultivars. In contrast, HSFs in European cultivars, including Epos and Granny, were strongly downregulated and partly even silenced, while the high-yielding variety Chamsin displayed a strong upregulation of type A HSFs. In conclusion, Australian cultivars are well adapted to moderate heat stress compared to European summer wheat. The latter strongly react after heat stress application by downregulating photosynthesis and transpiration rates as well as differentially regulating HSFs gene expression pattern.


2019 ◽  
Vol 11 (3) ◽  
pp. 505-520 ◽  
Author(s):  
Kerstin K. Zander ◽  
Simon Moss ◽  
Stephen T. Garnett

Abstract There is mounting evidence that climate change impacts compromise people’s well-being. Many regions of Australia have experienced record hot temperatures and more frequent and longer heat waves with substantial consequences for people, economies, and ecosystems. Using data from an Australia-wide online survey with 1101 respondents, we investigated the relationship between self-reported measures of heat stress and different dimensions of subjective well-being. After controlling for socioeconomic factors known to affect well-being, we found that heat stress was linked to people’s certainty about and planning for their future but not to their life satisfaction, happiness, social state, capabilities, or purpose in life. This result indicates that, while heat is not associated with present well-being, many people worry about the effect that increased heat will have on their future well-being. People who were uncertain about their future were also more likely than those who did not feel uncertain to think that heat compromised their productivity. People who agreed that they were competent and capable in their activities rated their heat stress–related productivity loss lower than those who disagreed. The findings are relevant for future studies using life-satisfaction approaches to assess consequences of climate change impacts and to studies in “happiness economics.” We recommend that future research on the impact of climate change on well-being go beyond simply life satisfaction and happiness and test multiple dimensions of well-being.


Sign in / Sign up

Export Citation Format

Share Document