scholarly journals Effluent conditioning of biodiesel production for biological treatment using clay as a separation coadjutant

2020 ◽  
Vol 16 (4) ◽  
Author(s):  
Lívia Caroline Correia ◽  
Romário Ribeiro Silva ◽  
Fernanda Rocha Morais França ◽  
Gabriel Francisco Da Silva ◽  
Diego F. Coêlho ◽  
...  

Biodiesel is a renewable, non-toxic and sustainable biofuel, considered to be the main candidate for a fossil fuel alternative in many countries. However, its manufacturing process results in about 0.2 to 3 L of effluent per litre of biodiesel produced. In addition to an inherently high organic load, its composition includes by-products, traces of unreacted chemicals and catalysts, which inhibit microorganism growth and prevent its direct treatment by tertiary methods. In this context, this work aims to evaluate the combination of the coagulation-flocculation technique with dissolved air flotation (DAF). Real wastewater samples were obtained by synthesising biodiesel from soybean oil in-loco and performing the required washing procedures. The highest turbidity reduction efficiency (92.03%) was obtained using 1200  of clay. By using response surface methodology, it was possible to analyse the effect of the chosen experimental factors and show that the best results (81.28%, 58.95% and 89.34% for turbidity, oil and grease and chemical oxygen demand  - respectively) were obtained using 925  of clay and 1000  of coagulant. Ultimately, clay proved to be an efficient coadjutant in the removal of organic matter, oils, grease, suspended solids and soluble organic matter from the biodiesel wastewater. Moreover, its low cost over traditional flocculants makes it an attractive alternative to industrial wastewater treatment processes.

2016 ◽  
Vol 11 (1) ◽  
pp. 86-92 ◽  
Author(s):  
M. Basitere ◽  
Y. Williams ◽  
M. S. Sheldon ◽  
S. K. O. Ntwampe ◽  
D. De Jager ◽  
...  

Generally, slaughterhouses have the largest consumption of fresh water and thus generate large quantities of high strength wastewater, which can be treated successfully using low cost biological treatment processes. In this study, the feasibility of using an expanded granular sludge bed (EGSB) anaerobic reactor coupled with anoxic and aerobic bioreactors for the treatment of poultry slaughterhouse wastewater was investigated. The poultry slaughterhouse was characterized by high chemical oxygen demand (COD), 2 to 6 g/L, with average biological oxygen demand of 2.4 g/L and average fats, oil and grease (FOG) being 0.55 g/L. A continuous EGSB anaerobic reactor was operated for 26 days at different hydraulic retention times (HRT), i.e. 7, 4, 3 days, and organic loading rates (OLR) of 0.5, 0.7 and 1.0 g COD/L.day, respectively, to assess the bioremediation of the poultry slaughterhouse wastewater. The average COD removal from the EGSB was 40%, 57% and 55% at the different OLR and HRT assessed. At high OLR of 1.0 g COD/L.day, the overall COD removal from the system (EGSB-anoxic/aerobic) averaged 65%. The system experienced periodical sludge washout during high FOG and suspended solids loading. It was concluded that the EGSB system requires a dissolved air flotation system, for FOG/suspended solid reduction, as the performance of the overall system was observed to deteriorate over time due to the presence of a high quantity of FOG including suspended solids.


2021 ◽  
Vol 3 (2) ◽  
pp. 130-140
Author(s):  
Maria Diana Puiu ◽  

The food industry wastewater is known to present a high organic matter content, due to specific raw materials and processing activities. Even if these compounds are not directly toxic to the environment, high concentrations in effluents could represent a source of pollution as discharges of high biological oxygen demand may impact receiving river's ecosystems. Identifying the main organic contaminants in wastewater samples represents the first step in establishing the optimum treatment method. The sample analysis for the non-target compounds through the GC-MS technique highlights, along with other analytical parameters, the efficiency of the main physical and biological treatment steps of the middle-size Wastewater Treatment Plant (WWTP). Long-chain fatty acids and their esters were the main abundant classes of non-target identified compounds. The highest intensity detection signal was reached by n-hexadecanoic acid or palmitic acid, a component of palm oil, after the physical treatment processes with dissolved air flotation, and by 1-octadecanol after biological treatment.


2017 ◽  
Vol 12 (1) ◽  
pp. 139-145 ◽  
Author(s):  
E. Kweinor Tetteh ◽  
S. Rathilal ◽  
K. Robinson

The use of coagulants is essential in the diverse disciplines of conventional water and wastewater treatment. This work aimed to select an economic and effective coagulant, to minimize the cost of treatment and the oil droplet content of the water, thus enhancing the efficiency of a local South African oil refinery effluent plant recovering water and oil for reuse by treating the industrial mineral oil wastewater. A standard dissolved air flotation jar test preceded evaluation of four coagulants, viz. aluminum sulfate (Alum), aluminum chloride, ferric sulfate and ferric chloride. Chemical oxygen demand, soap oil and grease, total suspended solids and turbidity were determined as water quality parameters to check coagulant efficiency. Removal of over 70% was achieved for each parameter. The results obtained at pH 5 and coagulant dose of 50 mg/L showed that alum was the best pretreatment coagulant for destabilizing and minimizing oil droplets in water, due to its trivalent cationic nature. It was also economically viable.


2019 ◽  
Vol 79 (5) ◽  
pp. 895-904 ◽  
Author(s):  
Priyanka Jamwal ◽  
Daniel Phillips ◽  
Kim Karlsrud

Abstract In the present study, three low-cost filter aggregate materials were tested and compared for organic matter and fecal coliform (FC) removal at the laboratory scale. Setups were subjected to synthetic wastewater at two hydraulic loading rates (HLR), i.e. 4 cm/day and 40 cm/day. The hydraulic retention time (HRT) at the two HLRs varied from 4 days to 12 h, respectively. The result obtained shows that the biochemical oxygen demand (BOD5) removal efficiency of aggregate materials decreased with the increase in HLR. Both at high and low HLR, the terracotta aggregate material exhibited maximum BOD5 loading removal and without significant difference for the case of FC removal efficiency for all the three aggregate materials. At higher HLR, cell debris and biofilm loss from the aggregate material contributed to the chemical oxygen demand (COD) levels in the treated water. The terracotta aggregate material provided best organic matter removal at both HLRs. The study demonstrates the potential of incorporating inexpensive and readily available local materials into decentralized, frugal green infrastructure interventions capable of lowering the quantum of harmful biological contaminants in open storm water channels in rapidly urbanizing cities of developing countries, and that the terracotta aggregate material provided best organic removal at both HLRs.


2012 ◽  
Vol 66 (12) ◽  
pp. 2546-2555 ◽  
Author(s):  
Miyoung Choi ◽  
Dong Whan Choi ◽  
Jung Yeol Lee ◽  
Young Suk Kim ◽  
Bun Su Kim ◽  
...  

Growing attention is given to pharmaceutical residue in the water environment. It is known that pharmaceuticals are able to survive from a series of wastewater treatment processes. Concerns regarding pharmaceutical residues are attributed to the fact that they are being detected in water and sediment environment ubiquitously. Pharmaceutical treatment using a series of wastewater treatment processes of the DAF (dissolved air flotation)–MBR (membrane bioreactor)–ozone oxidation was conducted in the study. DAF, without addition of coagulant, could remove CODcr (chemical oxygen demand by Cr) up to over 70%, BOD 73%, SS 83%, T-N 55%, NH4+ 23%, and T-P 65% in influent of municipal wastewater. Average removal rates of water quality parameters by the DAF–MBR system were very high, e.g. CODcr 95.88%, BOD5 99.66%, CODmn (chemical oxygen demand by Mn) 93.63%, T-N 69.75%, NH4-N 98.46%, T-P 78.23%, and SS 99.51%, which satisfy effluent water quality standards. Despite the high removal rate of the wastewater treatment system, pharmaceuticals were eliminated to be about 50–99% by the MBR system, depending on specific pharmaceuticals. Ibuprofen was well removed by MBR system up to over 95%, while removal rate of bezafibrate ranged between 50 and 90%. With over 5 mg/l of ozone oxidation, most pharmaceuticals which survived the DAF–MBR process were removed completely or resulted in very low survival rate within the range of few micrograms per litre. However, some pharmaceuticals such as bezafibrate and naproxen tended to be resistant to ozone oxidation.


2017 ◽  
Vol 76 (1) ◽  
pp. 106-114 ◽  
Author(s):  
M. Basitere ◽  
Z. Rinquest ◽  
M. Njoya ◽  
M. S. Sheldon ◽  
S. K. O. Ntwampe

The South African poultry industry has grown exponentially in recent years due to an increased demand for their products. As a result, poultry plants consume large volumes of high quality water to ensure that hygienically safe poultry products are produced. Furthermore, poultry industries generate high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of a bench-scale mesophilic static granular bed reactor (SGBR) containing fully anaerobic granules coupled with an ultrafiltration (UF) membrane system, as a post-treatment system, was investigated. The poultry slaughterhouse wastewater was characterized by a chemical oxygen demand (COD) range between 1,223 and 9,695mg/L, average biological oxygen demand of 2,375mg/L and average fats, oil and grease (FOG) of 554mg/L. The SGBR anaerobic reactor was operated for 9 weeks at different hydraulic retention times (HRTs), i.e. 55 and 40 h, with an average organic loading rate (OLR) of 1.01 and 3.14g COD/L.day. The SGBR results showed an average COD, total suspended solids (TSS) and FOG removal of 93%, 95% and 90% respectively, for both OLR. The UF post-treatment results showed an average of COD, TSS and FOG removal of 64%, 88% and 48%, respectively. The overall COD, TSS and FOG removal of the system (SGBR and UF membrane) was 98%, 99.8%, and 92.4%, respectively. The results of the combined SGBR reactor coupled with the UF membrane showed a potential to ensure environmentally friendly treatment of poultry slaughterhouse wastewater.


2015 ◽  
Vol 74 (3) ◽  
Author(s):  
Mohd Hafizuddin Muhamad ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Hassimi Abu Hasan

In this study, an attached-growth bioreactor was operated using granular activated carbon (GAC) with additional biomass; and evaluatedits performance in the treatment of real recycled paper mill effluent at chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 hours and COD:N:P ratio of about 100:5:1. A laboratory-scale aerobic sequencing batch reactor (SBR) was used. The efficiency of this biological treatment processwas studiedover a 300-day period, in order to evaluate their performance, especially for the removal of nitrogen compound and of biodegradable organic matter. It has been found that this process was able to remove organic matter (expressed as COD; 91-99%) and turbidity (89-99%) almost completely and simultaneously; the removal of nitrogen (expressed as NH3-N; 70-94%), phosphorus (expressed as PO43-P; 42-71%), suspended solid (81-99%) and colour (72-91%) were sufficiently achieved. The overall performance confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of the performance efficiency and process stability under fluctuations of organic load.


Processes ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 447 ◽  
Author(s):  
Leili Mohammadi ◽  
Abbas Rahdar ◽  
Edris Bazrafshan ◽  
Hamid Dahmardeh ◽  
Md. Abu Bin Hasan Susan ◽  
...  

Oil pollutants, due to their toxicity, mutagenicity, and carcinogenicity, are considered a serious threat to human health and the environment. Petroleum hydrocarbons compounds, for instance, benzene, toluene, ethylbenzene, xylene, are among the natural compounds of crude oil and petrol and are often found in surface and underground water as a result of industrial activities, especially the handling of petrochemicals, reservoir leakage or inappropriate waste disposal processes. Methods based on the conventional wastewater treatment processes are not able to effectively eliminate oil compounds, and the high concentrations of these pollutants, as well as active sludge, may affect the activities and normal efficiency of the refinery. The methods of removal should not involve the production of harmful secondary pollutants in addition to wastewater at the level allowed for discharge into the environment. The output of sewage filtration by coagulation and dissolved air flotation (DAF) flocculation can be transferred to a biological reactor for further purification. Advanced coagulation methods such as electrocoagulation and flocculation are more advanced than conventional physical and chemical methods, but the major disadvantages are the production of large quantities of dangerous sludge that is unrecoverable and often repelled. Physical separation methods can be used to isolate large quantities of petroleum compounds, and, in some cases, these compounds can be recycled with a number of processes. The great disadvantage of these methods is the high demand for energy and the high number of blockages and clogging of a number of tools and equipment used in this process. Third-party refinement can further meet the objective of water reuse using methods such as nano-filtration, reverse osmosis, and advanced oxidation. Adsorption is an emergency technology that can be applied using minerals and excellent materials using low-cost materials and adsorbents. By combining the adsorption process with one of the advanced methods, in addition to lower sludge production, the process cost can also be reduced.


2007 ◽  
Vol 56 (3) ◽  
pp. 39-48 ◽  
Author(s):  
F. Masi ◽  
N. Martinuzzi ◽  
R. Bresciani ◽  
L. Giovannelli ◽  
G. Conte

This paper describes a two-year performance evaluation of four different constructed wetland (CW) treatment systems designed by IRIDRA Srl, located in central Italy. All four CW systems were established to treat wastewater effluent from different tourist activities: (1) one single-stage CW for secondary treatment of domestic wastewater (30 p.e.) at a holiday farm site; (2) a hybrid compact system consisting of two stages, a horizontal flow (HF) system followed by a vertical flow (VF) system for the secondary treatment of effluent from a 140 p.e. tourist resort; (3) a single-stage vertical flow (VF) CW for a 100 p.e. mountain shelter; and (4) a pair of single-stage, HF CWs for the secondary treatment of segregated grey and black water produced by an 80 p.e. camping site. These tourism facilities are located in remote areas and share some common characteristics concerning their water management: they have high variability of water consumption and wastewater flow, depending on the season, weather and weekly regularities; they have no connection to a public sewer and most sites are located in a sensitive environment. Total suspended solids (TSS), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), ammonium (N-NH+4), nitrate (N-NOx), total nitrogen (Ntot), total phosphorus (Ptot), total coliform (TC), faecal coliform (FC), E. coli removal efficiencies for all four CW systems are presented. The results from this study demonstrate the potential of CWs as a suitable technology for treating wastewater from tourism facilities in remote areas. A very efficient COD reduction (83–95%) and pathogen elimination (3–5 logs) have been achieved. Furthermore, the CWs are easily maintained, robust (not sensitive to peak flows), constructed with local materials, and operate with relatively low cost.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 345
Author(s):  
Honeil Basile Meyo ◽  
Mahomet Njoya ◽  
Moses Basitere ◽  
Seteno Karabo Obed Ntwampe ◽  
Ephraim Kaskote

This study presents the biological treatment of poultry slaughterhouse wastewater (PSW) using a combination of a biological pretreatment stage, an expanded granular sludge bed reactor (EGSB), and a membrane bioreactor (MBR) to treat PSW. This PSW treatment was geared toward reducing the concentration of contaminants present in the PSW to meet the City of Cape Town (CoCT) discharge standards and evaluate an alternative means of treating medium- to high-strength wastewater at low cost. The EGSB used in this study was operated under mesophilic conditions and at an organic loading rate (OLR) of 69 to 456 mg COD/L·h. The pretreatment stage of this laboratory-scale (lab-scale) plant played an important role in the pretreatment of the PSW, with removal percentages varying between 20% and 50% for total suspended solids (TSS), 20% and 70% for chemical oxygen demand (COD), and 50% and 83% for fats, oil, and grease (FOG). The EGSB further reduced the concentration of these contaminants to between 25% and 90% for TSS, 20% and 80% for COD, and 20% and >95% for FOG. The last stage of this process, i.e., the membrane bioreactor (MBR), contributed to a further decrease in the concentration of these contaminants with a peak removal performance of >95% for TSS and COD and 80% for the FOG. Overall, the system (pretreatment–EGSB–MBR) exceeded 97% for TSS and COD removal and 97.5% for FOG removal. These results culminated in a product (treated wastewater) meeting the discharge standards.


Sign in / Sign up

Export Citation Format

Share Document