scholarly journals Stem Girdling Affects the Carbon/Nitrogen Imbalance and Oxidative Stress, and Induces Leaf Senescence in Phenological Forms of Beech (Fagus sylvatica)

2017 ◽  
Vol 59 (1) ◽  
pp. 67-79
Author(s):  
Wojciech Kraj

AbstractGirdling was applied to 5-year-old potted beech individuals of early, intermediate and late phenological forms to block assimilate export from leaves. Phloem severance caused accumulation of soluble carbohydrates and starch in leaves and increased the C/N ratio. While the hexose content increased continuously until the end of the experiment, the sucrose and starch contents peaked earlier, depending on the plant’s phenological features. Different rates of chlorophyll degradation and H2O2and TBARS (thiobarbituric acid-reactive substances) production in different phenological forms implied that phloem girdling was the source of oxidative stress and, depending on the phenological form, accelerated leaf senescence to different degrees. The variable rate of the increase in soluble carbohydrate and starch content, characteristic of the different phenological forms, had different modifying effects on the antioxidant activity in leaves. Compared with the early phenological form, the late form was characterized by a smaller increase in H2O2and TBARS content and delayed and slowed chlorophyll and carotenoid degradation. In conjunction with the larger increase in the activity of antioxidant enzymes (catalase, ascorbate peroxidase and superoxide dismutase) induced by carbohydrate accumulation and slower carotenoid degradation, these changes led to the late form having greater resistance to oxidative stress and slower senescence.

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1879 ◽  
Author(s):  
Anitra C. Carr ◽  
Emma Spencer ◽  
Andrew Das ◽  
Natalie Meijer ◽  
Carolyn Lauren ◽  
...  

Patients undergoing myeloablative chemotherapy and hematopoietic stem cell transplantation (HSCT) experience profound neutropenia and vulnerability to infection. Previous research has indicated that patients with infections have depleted vitamin C status. In this study, we recruited 38 patients with hematopoietic cancer who were undergoing conditioning chemotherapy and HSCT. Blood samples were collected prior to transplantation, at one week, two weeks and four weeks following transplantation. Vitamin C status and biomarkers of inflammation (C-reactive protein) and oxidative stress (protein carbonyls and thiobarbituric acid reactive substances) were assessed in association with febrile neutropenia. The vitamin C status of the study participants decreased from 44 ± 7 µmol/L to 29 ± 5 µmol/L by week one (p = 0.001) and 19 ± 6 µmol/L by week two (p < 0.001), by which time all of the participants had undergone a febrile episode. By week four, vitamin C status had increased to 37 ± 10 µmol/L (p = 0.1). Pre-transplantation, the cohort comprised 19% with hypovitaminosis C (i.e., <23 µmol/L) and 8% with deficiency (i.e., <11 µmol/L). At week one, those with hypovitaminosis C had increased to 38%, and at week two, 72% had hypovitaminosis C, and 34% had outright deficiency. C-reactive protein concentrations increased from 3.5 ± 1.8 mg/L to 20 ± 11 mg/L at week one (p = 0.002), and 119 ± 25 mg/L at week two (p < 0.001), corresponding to the development of febrile neutropenia in the patients. By week four, these values had dropped to 17 ± 8 mg/L (p < 0.001). There was a significant inverse correlation between C-reactive protein concentrations and vitamin C status (r = −0.424, p < 0.001). Lipid oxidation (thiobarbituric acid reactive substances (TBARS)) increased significantly from 2.0 ± 0.3 µmol/L at baseline to 3.3 ± 0.6 µmol/L by week one (p < 0.001), and remained elevated at week two (p = 0.003), returning to baseline concentrations by week four (p = 0.3). Overall, the lowest mean vitamin C values (recorded at week two) corresponded with the highest mean C-reactive protein values and lowest mean neutrophil counts. Thus, depleted vitamin C status in the HSCT patients coincides with febrile neutropenia and elevated inflammation and oxidative stress.


1995 ◽  
Vol 22 (5) ◽  
pp. 747 ◽  
Author(s):  
Z Wang ◽  
B Quebedeaux ◽  
GW Stutte

Potted apple (Malus domestica Borkh. cv. Jonathan) trees were subjected to water stress in a greenhouse. Midday leaf water potential (ΨW), osmotic potential (ΨS), soluble carbohydrates, and starch content of expanding and mature leaves, stems, and roots were measured to determine whether active osmotic adjustment occurred and if water stress affected carbohydrate metabolism. Mature leaves had the highest total soluble carbohydrate level (357 mM) and lowest Ψ (-1.85 MPa), followed by young leaves (278 mM, -1.58 MPa), stems (115 mM, -1.02 MPa), and roots (114 mM, -0.87 MPa). Sorbitol was the major component in all organs ranging from 53% of total soluble carbohydrate in young leaves to 73% in mature leaves. When ΨW decreased from -1.0 to -3.2 MPa, active osmotic adjustments of 0.3-0.4 MPa were observed in mature leaves, stems, and roots while a significantly higher adjustment of 1.0 MPa was detected in young leaves 5 days after the initiation of water stress. Sorbitol levels in leaves and stems gradually increased as ΨW decreased from -1.0 to -2.5 MPa, and then remained relatively stable or decreased slightly as ΨW decreased from -2.5 to -3.2 MPa. However, the percentage of soluble carbohydrate as sorbitol in roots decreased in response to water stress. Sucrose concentration decreased in mature leaves and stems, but increased in young leaves and roots as ΨW decreased. Starch concentrations in stems and roots also decreased as water stress developed. The sorbitol to sucrose ratios increased in mature leaves, but decreased in roots in response to water stress.


2011 ◽  
Vol 30 (10) ◽  
pp. 1626-1634 ◽  
Author(s):  
Amit K Sharma ◽  
Swapan K Bhattacharya ◽  
Naresh Khanna ◽  
Ashok K Tripathi ◽  
Tarun Arora ◽  
...  

Progesterone (a neurosteroid) is an important modulator of the nervous system functioning. Organophosphorus pesticides like phosphamidon have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was therefore designed to investigate the effects of progesterone (PROG) on phosphamidon-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and prolongation of TL in the phosphamidon (1.74 mg/kg/d; p.o.) treated group at weeks 6 and 8 as compared to the control group. Two weeks treatment with PROG (15 mg/kg/d; i.p.) antagonized the effect of phosphamidon on SDL as well as TL. Phosphamidon alone produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. Treatment with PROG (15 mg/kg/d; i.p.) attenuated the effect of phosphamidon on oxidative stress. Together, the results showed that progesterone attenuated the cognitive dysfunction and increased oxidative stress induced by phosphamidon in the brain.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 986
Author(s):  
Felipe J. Aidar ◽  
Guacira S. Fraga ◽  
Márcio Getirana-Mota ◽  
Anderson Carlos Marçal ◽  
Jymmys L. Santos ◽  
...  

Background: Paralympic Powerlifting (PP) training tends to promote fatigue and oxidative stress. Objective: To analyze the effects of ibuprofen use on performance and oxidative stress in post-training PP athletes. Methodology: Ten national level PP athletes (age: 27.13 ± 5.57) were analyzed for oxidative stress in post-training. The study was carried out in three weeks, (1) familiarization and (2 and 3) evaluated the recovery with the use of a placebo (PLA) and ibuprofen (IBU), 800 mg. The Peak Torque (PT), Torque Development Rate (TDR), Fatigue Index (FI), reactive substances to thiobarbituric acid (TBARS) and sulfhydryl groups (SH) were evaluated. The training consisted of five sets of five repetitions (80–90%) 1-Repetition Maximum (1-RM) in the bench press. Results: The IBU showed a higher PT (24 and 48 h, p = 0.04, ɳ2 p = 0.39), a lower FI (24 h, p = 0.01, ɳ2p = 0.74) and an increased lymphocyte count (p < 0.001; ɳ2p = 4.36). There was no change in oxidative stress. Conclusions: The use of IBU provided improvements in strength and did not protect against oxidative stress.


2010 ◽  
Vol 80 (2) ◽  
pp. 97-106 ◽  
Author(s):  
Jae Soon Byun ◽  
Young Sun Han ◽  
Sang Sun Lee

Soy isoflavones have been reported to decrease the risk of atherosclerosis in postmenopausal women. However, the effects of dietary consumption of soybean have not been explored. In this study, we evaluated the effects of consuming yellow soybeans, black soybeans (Glycine max), or sword beans (Canavalia gladiate) on lipid and oxidative stress levels in an ovariectomized rat model. Forty-seven nine-week-old female rats were ovariectomized, randomly divided into four groups, and fed one of the following diets for 10 weeks: a diet supplemented with casein (NC, n = 12), a diet supplemented with yellow soybean (YS, n = 12), a diet supplemented with black soybean (BS, n = 12), or a diet supplemented with sword bean (SB, n = 11). Plasma triglyceride (TG) levels in the BS and SB groups were significantly lower than that in the NC group. Notably, the BS group had significantly lower plasma total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) levels than the other groups. Hepatic total lipid levels were significantly lower in the YS and SB groups, and cholesterol levels were significantly lower in the SB group than in the NC group. Superoxide dismutase (SOD) and catalase (CAT) activities were significantly higher in the groups fed beans compared to the NC group. Hepatic thiobarbituric acid reactive substances (TBARS) levels were also significantly lower in the BS and SB groups than the NC group. In conclusion, our results suggest that consumption of various types of beans may inhibit oxidative stress in postmenopausal women by increasing antioxidant activity and improving lipid profiles. Notably, intake of black soybean resulted in the greatest improvement in risk factors associated with cardiovascular disease.


2021 ◽  
Vol 45 ◽  
Author(s):  
Niedja Bezerra Costa ◽  
Gustavo de Andrade Bezerra ◽  
Geovanni de Oliveira Pinheiro Filho ◽  
Moemy Gomes de Moraes

ABSTRACT Rice is one of the main foods consumed by half of the world’s population. The rice crop requires plenty of water, but upland rice is cultivated in a non-flooded environment, although its productivity is lower than that of lowland rice. Rice grains mostly consist of starch, which is synthesized from the non-structural carbohydrates imported from the vegetative organs. The long-term storage of carbohydrates plays a remarkable role in maintaining the supply of photoassimilates during grain filling if photosynthesis does not meet energy demand. Therefore, the dynamics of non-structural carbohydrates is central to the productivity of rice crops. The present study aimed to determine the non-structural carbohydrate content and soluble carbohydrate profiles in different vegetative organs of upland rice of the genotype BRS Esmeralda. The content was determined at the end of vegetative development. The identification and quantification of carbohydrates were performed by high-performance anion-exchange chromatography with pulsed amperometric detection. Fully expanded leaf blades, expanding leaf blades, and expanding stems exhibited the soluble carbohydrate content of 59.7, 53.3, and 52.3 mg g-1 DM, respectively. The stem was found to be the main organ for the long-term storage of non-structural carbohydrates, wherein the starch content was 36.1 mg g-1 DM. It also contained soluble carbohydrates such as glucose, fructose, and sucrose. The non-structural carbohydrates were found in low amounts in the roots, showing that this organ does not store long-term carbohydrates.


2012 ◽  
Vol 84 (4) ◽  
pp. 1121-1126 ◽  
Author(s):  
Seyed M. Nabavi ◽  
Seyed F. Nabavi ◽  
Akbar H. Moghaddam ◽  
William N. Setzer ◽  
Morteza Mirzaei

This study aim to evaluate the protective effect of silymarin on sodium fluoride-induced oxidative stress in rat cardiac tissues. Animals were pretreated with silymarin at 20 and 10 mg/kg prior to sodium fluoride consumption (600 ppm through drinking water). Vitamin C at 10 mg/kg was used as standard antioxidant. There was a significant increase in thiobarbituric acid reactive substances level (59.36 ± 2.19 nmol MDA eq/g tissue) along with a decrease in antioxidant enzymes activity (64.27 ± 1.98 U/g tissue for superoxide dismutase activity and 29.17 ± 1.01 µmol/min/mg protein for catalase activity) and reduced glutathione level (3.8 ± 0.15 µg/mg protein) in the tissues homogenates of the sodium fluoride-intoxicated rats. Silymarin administration to animals before sodium fluoride consumption modified the levels of biochemical parameters.


2019 ◽  
Author(s):  
Jean Carlos Silvestre ◽  
Rodrigo Gianoni ◽  
Gilmar Esteves ◽  
Rafael Lambertucci ◽  
Alessandro de Moura Zagatto ◽  
...  

This study analyzed whether the Beta-Alanine (BA) supplementation improves performance and oxidative stress indices during the tapering period. We assessed eleven volleyball athletes over 8-week. The performance was evaluated through the countermovement jump (CMJ). We evaluated Internal Training Load (ITL), questionnaires (Wisconsin Upper Respiratory Symp-tom Survey 21 – WURSS 21) and oxidative stress (Thiobarbituric acid reactive substances - TBARS, uric acid and nitrite). Athletes supplemented with BA or dextrose (PL) at doses of 6.4 g/day. Beta-alanine (BA) supplementation does not modulate the performance (CMJ). Along the treatment period, the internal load of the PL group remained higher than the BA group (P=0.011). The uric acid and nitrite were neither modulated by training nor treatment. Howev-er, the TBARS was lower at post moment than pre, without difference between groups. Thus, BA supplementation neither increased the performance nor decreased oxidative stress in vol-leyball athletes after a period of training intensification.


2004 ◽  
Vol 79 (1) ◽  
pp. 99-108 ◽  
Author(s):  
G. Gabai ◽  
S. Testoni ◽  
R. Piccinini ◽  
L. Marinelli ◽  
C. M. Howard ◽  
...  

AbstractOxidative stress may be important in early lactation cows due to high metabolic demands. Modifying dietary starch may alter glucose utilization, modify oxidative metabolism and, consequently, increase oxidative stress. To test this hypothesis, early lactation primiparous cows underwent a short-term dietary starch restriction followed by realimentation. At calving, 10 Friesian primiparous cows were randomly assigned to two groups and given a basal starch diet (BSD, 249 g/kg of starch dry matter (DM)) in the form of a total mixed ration until 42 days in milk (DIM). Afterwards, five cows (CTR) continued to receive the same diet and five cows (EXP) were allotted to experimental diets: low starch diet (LSD, 210 g/kg starch DM) from 43 to 65 DIM followed by high starch diet (HSD, 283 g/kg starch DM) from 66 to 85 DIM and BSD from 86 to 94 DIM. Blood samples were collected at 37, 50, 60, 70, 80, and 94 DIM to measure total plasma glutathione (GSH), thiobarbituric acid reactive substances (TBARS), and erythrocyte glutathione peroxidase (GPx) activity as indicators of oxidative stress, N-acetyl-ß-D glucosaminidase (NAGase), lysosyme, and white blood cell counts as indicators of immune response. Metabolic adaptations were evaluated by glucose, non-esterified fatty acids (NEFA), beta-hydroxy-butyrate (BOHB), insulin, and GH concentrations, and the acid/base balance. Milk yield was not significantly different between groups throughout the experiment and was correlated with TBARS (r 0·284; P 0·05) and GSH (r = 0·294; P 0·05). Estimated energy intake was significantly higher in the EXP group at 70 DIM only (P 0·05). Plasma glucose was significantly lower in the EXP group at 50, 60 (P 0·001) and 80 DIM (P 0·05), and was correlated with GSH (r = 0·348; P 0·01) and TBARS (r = 0·367; P 0·01). Plasma NEFA decreased overall in both groups (P 0·01). EXP was lower than CTR in concentrations of plasma BOHB at 70 DIM (P 0·05) and plasma insulin at 60 (P 0·001), 80 and 94 (P 0·05) DIM. Plasma TBARS, GSH and GPx increased throughout (P 0·01) in both groups. This was delayed in the EXP group following introduction of LSD; significant differences between groups at 60 (P 0·01), 80 and 95 (P 0·05) DIM for TBARS, and at 70 (P 0·01) and 80 (P 0·05) DIM for GPx. Indicators of immune response and plasma bicarbonates did not differ between groups. Blood pH was significantly lower in the EXP group at 80 and 94 DIM (P 0·001). Blood pCO2 was significantly lower at 80 and 94 DIM (P 0·05) in the CTR group. While recovering from the negative energy balance, cellular metabolism probably shifted towards oxidative phosphorylation, with a consequent oxidative stress increase. LSD delayed this recovery in the EXP group and thus reduced GSH synthesis. In conclusion, the diet starch content may alter the control of oxidative stress and expose animals to oxidative injuries.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 866
Author(s):  
Takaki Tominaga ◽  
Tsukasa Ikemura ◽  
Koichi Yada ◽  
Kazue Kanda ◽  
Kaoru Sugama ◽  
...  

Strenuous exercise induces organ damage, inflammation and oxidative stress. To prevent exercise-induced organ damage, inflammation and oxidative stress, rehydrating may be an effective strategy. In the present study, we aimed to examine whether beverage intake after exhaustive exercise to recover from dehydration prevents such disorders. Thirteen male volunteers performed incremental cycling exercise until exhaustion. Immediately after exercise, the subjects drank an electrolyte containing water (rehydrate trial: REH) or did not drink any beverage (control trial: CON). Blood samples were collected before (Pre), immediately (Post), 1 h and 2 h after exercise. Urine samples were also collected before (Pre) and 2 h after exercise. We measured biomarkers of organ damage, inflammation and oxidative stress in blood and urine. Biomarkers of muscle, renal and intestinal damage and inflammation increased in the blood and urine after exercise. However, changes in biomarkers of organ damage and inflammation did not differ between trials (p > 0.05). The biomarker of oxidative stress, thiobarbituric acid reactive substances (TBARS), in plasma, showed different changes between trials (p = 0.027). One hour after exercise, plasma TBARS concentration in REH had a higher trend than that in CON (p = 0.052), but there were no significant differences between Pre and the other time points in each trial. These results suggest that beverage intake after exercise does not attenuate exercise-induced organ damage, inflammation or oxidative stress in healthy males. However, rehydration restores exercise-induced oxidative stress more quickly.


Sign in / Sign up

Export Citation Format

Share Document