scholarly journals The novel control method of switched reluctance generator

2017 ◽  
Vol 66 (2) ◽  
pp. 409-422
Author(s):  
Piotr Bogusz

AbstractIn the paper, a novel control method of a switched reluctance generator was discussed. The presented control method allows a rotor rotating at high speed to enter the continuous-conduction mode which causes an increase of generated output power. A control function of the presented method was given as well as simulation and laboratory tests.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8203
Author(s):  
Piotr Bogusz ◽  
Mariusz Korkosz ◽  
Jan Prokop ◽  
Mateusz Daraż

This paper presents a description and the results of simulations and laboratory tests of proposed methods for dependent torque control in a Switched Reluctance Motor (SRM). The proposed methods are based on Dependent Torque Motor Control (Rising Slope), DTMC(RC), and Dependent Torque Motor Control (Falling Slope), DTMC(FC). The results of these studies were compared with those on the Classical Torque Motor Control (CTMC) method. Studies were conducted for each of the analyzed control methods by determining the efficiency of the drive and the RMS of the source current and analyzing the vibrations generated for each of the control methods. The harmonics of the phase currents, which caused an increase in the level of vibrations generated, were determined. The usefulness of the proposed methods for controlling SRMs was assessed based on simulations and experiments. Additionally, the natural frequencies of the stator of the tested SRM were determined by a simulation using the Ansys Maxwell suite. The levels of vibration acceleration generated by the SRM were compared for the considered control methods.


2014 ◽  
Vol 23 (03) ◽  
pp. 1450038 ◽  
Author(s):  
LING-FENG SHI ◽  
HUI-LI GUAN ◽  
QIN-QIN LI ◽  
XIN-QUAN LAI

A novel control method for the critical conduction mode (CRM) power factor correction (PFC) converter is presented, which reduces the size of the boost inductor in the system with wide input-voltage range and improves the efficiency of the system with low input voltage. By introducing the following boost circuit, the output voltage in the application circuit varies with the input root mean square (RMS) voltage to reduce the demand for the large size of the inductor and the efficiency of the system keeps high under the low input voltage. A novel CRM PFC control system with smaller size inductor and higher efficiency is achieved by applied the following boost method to the core control circuits. Experiment results show that the inductance value of the boost inductor is 430 μH using the presented PFC control system and 700 μH using the traditional PFC control system when the input voltage varies from 85 V to 265 V. The novel control method decreases the inductor's value at 38.2%, and the efficiency of the system improves at 1.62% under the input voltage of 85 V.


2016 ◽  
Vol 65 (4) ◽  
pp. 685-701 ◽  
Author(s):  
Piotr Bogusz ◽  
Mariusz Korkosz ◽  
Jan Prokop

Abstract In the paper, the modified (compared to the classical asymmetric half-bridge) converter for a switched reluctance machine with an asymmetric rotor magnetic circuit was analysed. An analysis for two various structures of switched reluctance motors was conducted. The rotor shaping was used to obtain required start-up torque or/and to obtain less electromagnetic torque ripple. The discussed converter gives a possibility to turn a phase off much later while reduced time of a current flows in a negative slope of inductance. The results of the research in the form of waveforms of currents, voltages and electromagnetic torque were presented. Conclusions were formulated concerning the comparison of the characteristics of SRM supplied by the classic converter and by the one supplied by the analysed converter.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6733
Author(s):  
Stefan Kocan ◽  
Pavol Rafajdus ◽  
Ronald Bastovansky ◽  
Richard Lenhard ◽  
Michal Stano

Currently, one of the most used motor types for high-speed applications is the permanent-magnet synchronous motor. However, this type of machine has high costs and rare earth elements are needed for its production. For these reasons, permanent-magnet-free alternatives are being sought. An overview of high-speed electrical machines has shown that the switched reluctance motor is a possible alternative. This paper deals with design and optimization of this motor, which should achieve the same output power as the existing high-speed permanent-magnet synchronous motor while maintaining the same motor volume. The paper presents the initial design of the motor and the procedure for analyses performed using analytical and finite element methods. During the electromagnetic analysis, the influence of motor geometric parameters on parameters such as: maximum current, average torque, torque ripple, output power, and losses was analyzed. The analysis of windage losses was performed by analytical calculation. Based on the results, it was necessary to create a cylindrical rotor shape. The rotor modification method was chosen based on mechanical analysis. Using thermal analysis, the design was modified to meet thermal limits. The result of the work was a design that met all requirements and limits.


2016 ◽  
Vol 9 (9) ◽  
pp. 1792-1800 ◽  
Author(s):  
Hsuang‐Chang Chiang ◽  
Faa‐Jeng Lin ◽  
Jin‐Kuan Chang ◽  
Kun‐Feng Chen ◽  
Yi‐Lun Chen ◽  
...  

Author(s):  
Siau Ping Tee ◽  
Mariam Md Ghazaly ◽  
Shin Horng Chong ◽  
Irma Wani Jamaludin

<span style="color: black; font-family: 'Times New Roman','serif'; font-size: 9pt; mso-fareast-font-family: 'Times New Roman'; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA; mso-bidi-font-style: italic;">A switched reluctance actuator (SRA) is a type of electromagnetic stepper actuator that is gaining popularity for its simple and rugged construction, ability of extremely high-speed operation and hazard-free operation. SRA gained supremacy over permanent magnet actuators due to the fact that its building material are relatively low cost compared to the expensive and rare permanent magnets. SRA is already making its debut in automotive, medical and high precision applications. However, many parties are still oblivious to this new age actuator. This paper reviews the latest literature in terms of journal articles and conference proceedings regarding the different design parameters and control method of SRA. The impact of the parameters on the performance of SRA are discussed in details to provide valuable insight. This paper also discussed the advantages of various novel SRA structure designs that prove to be a huge contribution to the future technology. It is found that several design parameters such as the air gap when kept minimum, increases torque value; while increasing number of phases in SRA minimizes torque ripples. Increased stator and rotor arc angles will increase torque, not to mention a larger excitation current can also achieve the same effect. Researches are often done through Finite Element Method (FEM) analysis to verify the optimized design parameters before fabrication, whilst experimental procedures are executed to verify the simulation results. To ensure smooth phase switching and improved torque output, intelligent controllers are employed in speed control and direct torque control (DTC) methods of SRA.</span>


Sign in / Sign up

Export Citation Format

Share Document