scholarly journals Effects of cotton stalk, maize stalk and almond bark on some soil microbial activities

2017 ◽  
Vol 43 (3) ◽  
pp. 91-96
Author(s):  
Çiğdem Küçük ◽  
Y.Tuba Tekgül

AbstractWith the increase of agricultural production, residues of crop are the main source of organic matter in the soil and they are alternatives to inorganic fertilizers. For this purpose, effects of organic residues (cotton stalk, maize stalk, almond bark) commonly grown in Turkey were investigated for some soil microbial activity in clay soil. In this study, incubation experiment was set up. Five doses (0%, 2%, 4%, 6% and 8%) of organic residues (maize stalks, cotton stalks or almond bark) were applied to soil. Soil microbiological properties of soil samples such as CO2respiration, dehydrogenase and urease activity were determined. According to the results obtained, maize stalk, cotton stalks and almond bark applications increased some soil microbiological activities, such as CO2respiration, dehydrogenase and urease activities according to control soil. Maize stalk in comparison to other residues affects better on the biological properties of the soil. It is determined that enhancing effects of the added organic residues (maize stalk, cotton stalk, almond bark) into the soil were changed according to the type of organic residues, dosage and application terms.

2020 ◽  
Vol 17 (4) ◽  
pp. e1104
Author(s):  
Adriana Montañez ◽  
Natalia Rigamonti ◽  
Silvana Vico ◽  
Carla Silva ◽  
Lucía Nuñez ◽  
...  

Aim of study: This study evaluated the effect of the application of liquid aerobic treated manure (continuous liquid composting, CLC) on physical, chemical and biological soil properties, with the objective of monitoring changes induced by soil management with CLC as a biofertilizer.Area of study: Colonia, Uruguay (lat. 34,338164 S, long. 57,222630 W).Material and methods: Soil’s chemical properties, including nitrogen mineralization potential (NMP) and 15 microbiological properties (microbial biomass carbon, MBC; mesophylic aerobic bacteria; actinobacteria; filamentus fungi; fluorescein diacetate hydrolysis; dehydrogenase; with NMP; acid and alkaline phosphatase; cellulolose degraders; P-solubilizing bacteria; nitrifying; denitrifying and free-living N-fixing microorganisms; glomalin; and soil-pathogenicity index, SPI) were evaluated in two sites with similar cropping history, with one and three years of respective CLC application.Main results: CLC application had significant effects on soil microbial biomass (p<0.05), soil enzyme (p<0.1) and functional groups activity (p<0.05). SPI decreased in both sites with CLC application. No significant variations were detected for the chemical variables, with the exception of NMP, which was significantly high (p<0.05) in soil treated with CLC at both sites.Research highlights: The improved biological soil properties analyzed (MBC, soil enzyme activities and SPI, together with NMP) emerged as reasonable indicators to assess and monitor the effects of CLC application.


2013 ◽  
Vol 59 (No. 4) ◽  
pp. 162-168 ◽  
Author(s):  
F. Wang ◽  
Tong YA ◽  
Zhang JS ◽  
Gao PC ◽  
Coffie JN

A field experiment was conducted to examine the influence of various organic materials on soil aggregate stability and soil microbiological properties on the Loess Plateau of China. The study involved seven treatments: no fertilizer (CK); inorganic N, P, K fertilizer (NPK); low amount of maize stalks plus NPK (LSNPK); medium amount of maize stalks plus NPK (MSNPK); high amount of maize stalks plus NPK (HSNPK); maize stalk compost plus NPK (CNPK); cattle manure plus NPK (MNPK). The organic fertilizer treatments improved soil aggregate stability and soil microbiological properties compared with CK and NPK treatments. Compared with the NPK treatment, soil treated with LSNPK had a significant increase of 27.1% in 5&ndash;3 mm dry aggregates. The &gt; 5 mm water stable aggregates treated with CNPK increased by 6.5% compared to the NPK. Soil microbial biomass C and N and urease activity were significantly increased in CNPK by 42.0, 54.6 and 19.8%, respectively. The study indicated that the variation trend in the amount of soil aggregate (0.5&ndash;5 mm) for organic fertilizer treatments was similar to the content of soil microbial carbon and nitrogen and soil enzyme activity. Considering the great availability of organic material, especially stalk compost in this region, application of organic materials is recommended to improve soil structure and fertility.


2014 ◽  
Vol 60 (No. 3) ◽  
pp. 117-122 ◽  
Author(s):  
W. Stępień ◽  
Górska EB ◽  
S. Pietkiewicz ◽  
Kalaji MH

This experimental work was undertaken to assess the effect of various fertilization regimes (CaNPK, NPK, CaPK, CaPN, CaKN and Ca) and different soil properties on growth and yield of Miscanthus plants and to check the impact of this plant on soil microbial characteristics. Field experiment was set up in 2003 on a long-term fertilization experiment, which had been established since 1923. Miscanthus giganteus response to high soil acidity and deficiency of N, P and K was investigated. Some physico-chemical and microbiological properties of soil samples were estimated and microbial characteristics of soil were conducted to investigate the number of the following microorganisms: heterotrophic bacteria, microscopic fungi, and some diazotrophic bacteria. Obtained results showed that, the highest yield of Miscanthus was obtained from the field fertilized with the CaNPK; while the lowest one was found for plants grown without nitrogen (CaPK). The high acidity of soil and small amount of phosphorus did not affect the yields in the NPK and CaKN combinations as compared with CaNPK one. The experiments showed that Miscanthus giganteus responded positively to mineral fertilization, especially with nitrogen. The rhizosphere of Miscanthus plants provides a suitable environment for the growth and development of microorganisms, in contrast to the non-rhizosphere zone.


2020 ◽  
Vol 12 (9) ◽  
pp. 199
Author(s):  
Maria Josiane Martins ◽  
Tânia Santos Silva ◽  
Igor Paranhos Caldas ◽  
Geovane Teixeira de Azevedo ◽  
Isabelle Carolyne Cardoso ◽  
...  

The allocation of the large amount of swine waste from farms is an international concern. An efficient way of managing such waste is its use in farming. It is already known that the incorporation of organic waste into the soil significantly increases the microbial population. Therefore, the objective was to evaluate the impact of the use of swine manure on the soil microbiota in a Eutrophic Oxisol. The experiment was set up in a completely randomized design in a 6 &times; 4 factorial scheme (sixconcentrations of swine manure and four evaluation periods) with four replications. We evaluate the following characteristics: microbial respiration (C-CO2), microbial biomass (&micro;C g-1 soil) and pH.: microbial respiration (C-CO2), microbial biomass (&micro;C g-1 soil) and pH. A significant effect was found in the interaction between concentrations and time of incubation (p &lt; 0.05) of swine manure on microbial activity in the soil. The amount of microbial carbon increased as a function of increased levels of liquid swine manure. No interaction was observed between concentrations and time of incubation for the pH. The evaluation of the isolated factors allowed to observe that the pH decreased as the doses of manure were incremented. Higher and lower pH values were found after 5 and 30 days of incubation. The application of liquid swine manure up to 6000 L ha-1 increases the release of CO2 and carbon in the microbial biomass. The applications of liquid swine manure cause a gradual reduction in soil pH.


Author(s):  
Jelena Marinkovic ◽  
Ivan Susnica ◽  
Dragana Bjelic ◽  
Branislava Tintor ◽  
Mirjana Vasic

The objective of this study was to compare the effects of conventional and organic production system on microbial activity in the soil cultivated with bean and maize crops. The trial in Djurdjevo was set up according to the conventional farming system, while organic farming system was used in Futog. Two maize hybrids and two bean cultivars were used in the trial. Soil samples were collected in two periods during 2014 (before sowing, at flowering stage of bean crops, and at 9-11 leaf stage of maize) at two depths, at both locations. The following microbiological parameters were tested: the total number of micro?organisms, number of ammonifiers, Azotobacter sp., free nitrogen fixing bacteria, fungi, actinomycetes, and activity of dehydrogenase enzyme. The results showed that the total number of microorganisms, number of free N-fixers and dehydrogenase activity were higher within organic production, while Azotobacter sp. was more abundant in conventional production. Variations in the number of ammonifiers, fungi and actinomycetes in relation to the type of production were not obtained. Significant differences in microbial activity were also obtained between period and depths of sampling.


2019 ◽  
Vol 40 (4) ◽  
pp. 1405
Author(s):  
José Ilmar Tínel de Carvalho Junior ◽  
Maria Isidória Silva Gonzaga ◽  
André Quintão de Almeida ◽  
Jady Araújo ◽  
Lúcia Catherinne Oliveira Santos

Biochar has shown much potential to be used as soil amendment and conditioner as well as an effective alternative to waste disposal. However, the effect of biochar on soil organic matter varies according to the type of feedstock. This study aimed to evaluate the influence of different types and rates of application of biochar on soil microbial activity and on soil carbon priming effect. The incubation experiment was set up as a completely randomized design in a 2 x 5 factorial scheme, with two types of biochar (coconut husk and orange bagasse) and five rates of application (0, 5, 10, 15 and 30 t ha-1), with three replications. Soil microbial activity was evaluated through the concentration of CO2 released from the soil during a period of 130 days. Carbon priming effect was determined based on the CO2 respired in the biochar treated soil and in the control soil. Both biochars increased the total oxidizable carbon in the soil when they were applied at 30 t ha-1, however, the orange bagasse biochar was more effective than the coconut biochar. Coconut biochar increased the cumulative soil microbial respiration at all rates of application during the incubation period, therefore, it contributed to a positive carbon priming effect and should be applied with caution to avoid excessive loss of carbon from the soil. Orange bagasse biochar had little influence on the cumulative CO2 emission, except at 15 t ha-1, which increased soil microbial activity.


2008 ◽  
Vol 57 (5) ◽  
pp. 727-733 ◽  
Author(s):  
E. Jueschke ◽  
B. Marschner ◽  
J. Tarchitzky ◽  
Y. Chen

In many arid and semi-arid regions, the demand for drinking water and other domestic uses is constantly growing due to demographic growth and increasing standard of living. Therefore, less freshwater is available for agricultural irrigation and new water sources are needed. Treated wastewater (TWW) already serves as an important water source in Israel since more than 40 years and its usage will further be extended. Related to its high loads with nutrients, salts and organic materials its use as irrigation water can have major effects on the soil physical, chemical and biological properties, in the worst case leading to soil degradation. Additional organic matter reaches the soil with the effluent water and soil microbial activity is stimulated. Soil organic carbon (SOC) seems to accumulate in the topsoil and tends to decrease after long-term irrigation with secondary TWW in the subsoil. The amount of dissolved organic carbon increased and the aromaticity of the organic compounds in the soil percolates decreased over the irrigation period. Priming effects, occurring after stimulation of microbial activity by the addition of easily degradable substances, could be found in the soils and were stronger for subsoil (1 m depth).


2015 ◽  
Vol 5 ◽  
Author(s):  
Eva Pose Juan ◽  
José Mariano Igual ◽  
Noemí Curto ◽  
María Jesús Sánchez-Martín ◽  
María Sonia Rodríguez-Cruz

The application of different organic residues as a soil amendment is an agricultural practice used to improve soil fertility by increasing the soil organic matter (OM). However, the OM from these residues can influence the behavior of pesticides applied jointly to the soil. Modification of the pesticide bioavailability in soils is of special interest since it can affect the activity and/or functioning of soil microbial community. Accordingly, the dissipation kinetics of mesotrione in unamended soil (S) and soils amended with sewage sludge (S+SS), green compost (S+C) and commercial pellets (S+P) and its possible effects on the soil microbial communities were studied. Soil biological parameters were determined as indicators of the soil microbial activity, functioning and structure: microbial biomass, dehydrogenase activity, respiration, and analysis of the phospholipid fatty acid (PLFA) profile extracted from the soil. Dissipation was more rapid in unamended soil than in amended soils and half-life (DT<sub>50</sub>) values followed the order S+SS &gt; S+C ≥ S+P &gt; S. The biomass values increased in the amended soils with the exception of the P-amended soil. However, mesotrione had different effects on this parameter depending on the soil treatment. In general, dehydrogenase activity was stimulated by the addition of the amendment and herbicide to soil. Initially, respiration was higher in the unamended soil (control and treated soils) than the amended soils and mesotrione did not have any effect on this parameter. PLFAs analysis indicated that the overall structure of active microbial communities as well as the relative abundance of certain groups of microorganisms clearly changed according to the type of amendment and the incubation time, but remained unaffected by the application of mesotrione.


2021 ◽  
Vol 12 (1) ◽  
pp. 193
Author(s):  
Marino Pedro Reyes-Martín ◽  
Irene Ortiz-Bernad ◽  
Antonio M. Lallena ◽  
Layla M. San-Emeterio ◽  
M. Lourdes Martínez-Cartas ◽  
...  

A field experiment was conducted on the Andalusian coast (Granada, Southern Spain) to study the time course of nutrient release into the soil after the addition of bagged pruning waste from subtropical orchard trees (avocado, cherimoya, and mango) and urban garden waste over three two-year periods. N, P, and K concentrations were greater in the garden waste, whilst avocado and cherimoya pruning waste registered the highest values for Mg. In general, micronutrient contents were low in all waste, especially Cu. Macronutrient release followed a three-phase dynamic: fast initial release, intermediate stabilization, and final increase. Garden waste showed a similar time course in all three trees and released greater concentrations of K and P. The annual decomposition rate factor k was negative for N and Ca in the avocado tree, indicating strong biological activity in this plot. Avocado, cherimoya, and garden waste showed a good microbial degradation, improving soil quality by increasing carbon and nitrogen contents as well as soil microbial activity. As for the mango tree, its special microclimatic conditions appeared to favor waste photodegradation, thus eliminating nutrients that were not incorporated into the soil. Soil enzymatic activities increased in the avocado and cherimoya trees with the addition of all waste. In the mango tree, only an increase in urease was detected after the addition of garden waste. Our results suggest that the time course of organic waste in different subtropical trees grown on similar soils is significantly conditioned by the microclimatic characteristics.


2020 ◽  
Vol 14 (1) ◽  
pp. 43-49
Author(s):  
Klára Czakó-Vér ◽  
Dávid Somfai ◽  
Erzsébet Suhajda ◽  
Csilla Sipeky ◽  
Gyula Árvay ◽  
...  

Aim of this paper is to examine the effect of spiked copper (Cu), nickel (Ni) and lead (Pb) metal salts on the dehydrogenase (oxydo-reductase) and phosphatase (hydrolase) enzyme activities in a characteristic Hungarian soil, the pseudomycelliar chernozem. Pot-experiment was performed with a soil, originating from a spot of the Hungarian soil-information-monitoring (TIM) system of Bicserd. The added metal salts were used in water soluble forms and incorporated uniformly to the soil. Soils were treated with increasing metal concentrations to give the following metal amounts: 0, 50, 200, and 800 kg.ha-1. Enzyme activities of the soil were analysed at the 0th, 7 th, 14 th, and 28th days after the metal addition. The laboratory model-experiment has been set up in three replicates. Effects of metal salts were largely dependent on the chemical and physical properties of pseudomycelliar chernozem soil, the applied heavy metal-types, the doses of used metals and the elapsed time after the pollution. Considering the different metals, the copper prowed to be the most toxic one on the studied enzyme activities, whereas the lead induced those. By comparison with copper the nickel affected a smaller decrease in the soil microbial activity. The dehydrogenase, oxydo-reductase enzyme was found to be more sensitive parameter in comparison with the phosphatase, hydrolase enzyme among the studied condition. Studied enzymes and used methods are suggested, as fast and rather reliable tools for estimating the soil-resilience capacities at heavy metal pollution.


Sign in / Sign up

Export Citation Format

Share Document