scholarly journals Impact of Moisture and Speed of Threshers on Efficiency of Crushing of Lupine Seeds

2020 ◽  
Vol 24 (2) ◽  
pp. 55-63
Author(s):  
Sławomir Gawłowski ◽  
Ryszard Kulig ◽  
Grzegorz Łysiak ◽  
Al Aridhee Jawad Kadhim ◽  
Zdybel Adam ◽  
...  

AbstractThe objective of the paper was to determine the impact of moisture and rotational speed of threshers on the process of crushing of lupine seeds. Raw material was led to four levels of moisture from 8 to 14% every 2%. The studies were carried out on the laboratory hammer mill with the use of variable speeds of mill hammers within 5500-7000 rot∙min−1. The studies that were carried out proved significant relations (p<0.05) between the analysed process variables and energy consumption and susceptibility of seeds to crushing. It was stated that along with the increase of the rotational speed, a reduction in the drop of the average dimension of particles of mill takes place. Along with the increase of moisture of lupine from 8 to 14% a unit energy of crushing increases on average by approx. 83%. It was proved that the susceptibility ratio of seeds to crushing increases along with the increase of raw material moisture. Such relations were determined for all investigated rotational speeds of hammers.

Author(s):  
Е. Sigarev ◽  
Y. Lobanov ◽  
А. Pohvalitiy

The results of calculation of energy efficiency of the variant of technology of converter smelting with preliminary heating of scrap metal in the unit due to burning of solid fuels in modern raw material conditions of the metallurgical enterprise of Ukraine are presented. A critical analysis of the variant of converter smelting technology with the use of preheating of an increased amount of scrap metal in the charge containing briquettes of steel chips in the unit, before pouring processing iron. According to the results of the calculation of the efficiency of use of different types of fuel used for preheating of scrap metal in the unit, the rational type and technology of its use in converter smelting are determined. A direct connection between the chemical composition of briquettes, the level of their preheating and the share in the metal charge on the energy efficiency of the converter process and their chemical heat content has been established. The nature of the temperature distribution in the volume of briquettes from steel shavings, which are a part of the metal charge, is taken into account when they are preheated by oxidation of coal with oxygen supplied through the nozzles of the standard lance. A method for calculating the change in energy consumption of scrap metal during its preheating, taking into account the content of elements in the briquettes and the level of heating. The energy consumption of the converter process with preheating of the metal charge increases in proportion to the level of contamination of briquettes from steel chips with non-metallic inclusions. According to the calculations when heating briquettes by 100—800 degrees in the converter, the increase in energy consumption of the converter process is from 60 to 630 MJ / t and from 445 to 1000 MJ/t for contamination of briquettes with non-metallic inclusions of 2.47 and 7.87 % by weight in accordance. With the reduction of briquette contamination, the efficiency of preheating of the metal charge increases. The share of the impact of the level of briquette contamination on the overall energy efficiency of the converter process is on average 0.3 % of the total energy savings of 1.91—1.92 GJ / t, which is achieved by increasing the share of scrap metal in the charge.


2016 ◽  
Vol 20 (2) ◽  
pp. 125-131 ◽  
Author(s):  
Magdalena Kręcisz

AbstractThe objective of the paper was to determine the impact of the rotational screw speed and the level of moisture of raw material on the efficiency and energy consumption of the extrusion-cooking process. Measurement of the extrusion-cooking process efficiency (Q) was carried out through determination of the extrudates mass and energy consumption was determined with the use of a specific mechanical energy (SME). Based on the research results it was found out that the factor which significantly decides on the measured values was a rotational screw speed. Along with the increase of this parameter the energy consumption and extrusion-cooking process efficiency increased during processing of corn grits. Extrusion-cooking process efficiency depended also on the level of moisture of raw material. At lower moisture of raw material the efficiency decreased along with the increase of the screw speed and above 18% of the moisture level it increased. Reverse relation was reported during testing the energy consumption of the extrusion-cooking process.


Author(s):  
Fatih Kürşat Fırat ◽  
Fahri Akbaş

The growth in world population, global climate change, consumption habits of people, and the excessive use of prime materials, causes natural resources to decline rapidly. We waste more energy during the process of production, operation and transportation of materials than ever. Perhaps one of the most important challenges that our generation faces is to create an economy that prevents waste. Considering limited resources, countries are searching for new methods of recycling and reusing waste material. Recycling is one primary way to reduce the consumption of natural resources. Waste material can go through a reproduction process with various physical and chemical transformation methods. The recycling of petrochemicals used in the automotive industry, electrical appliances, steel and cement industries, and the improvement of the transportation sector can reduce energy consumption and raw material significantly. Investment in recycling facilities can maximize profits by turning waste back into the economy. In Turkey, the improvements on the subject of recycling of materials such as plastics and paper are observed. However, we almost see no recycling in the construction industry, except iron and steel sector. Demolition materials in other countries are included in the reproduction processes through recycling. Thus both the benefits of reducing energy consumption and carbon emissions are at a minimum. Therefore, this study focuses on the recycling in the Turkey construction industry. The research also investigates the impact of recycling of construction materials to the economy and the environment based on the data and knowledge obtained from some European countries.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Dolly Santos-Barbosa ◽  
Dachamir Hotza ◽  
Juan Boix ◽  
Gustavo Mallol

A model to study the influence of main process variables (powder moisture, maximum compaction pressure, and maximum firing temperature) on the intermediate variables (mass, dry bulk density, size, and thickness) and the final dimensions of porcelain tiles is proposed. The properties of dried and fired bodies are basically determined by the process parameters when the physical, chemical, and mineralogical characteristics of the raw material are kept constant. For a given set of conditions, an equation could be sought for each property as a function of raw materials and processing. In order to find the relationship between moisture content and compaction pressure with dry bulk density, springback, and drying and firing shrinkage, a laboratory experimental design with three factors and four levels was applied. The methodology was validated in lab scale for a porcelain tile. The final size and thickness were estimated, and the influence of the main process variables was analysed.


2020 ◽  
Vol 12 (5) ◽  
pp. 1960
Author(s):  
Rosaura Castrillón-Mendoza ◽  
Javier M. Rey-Hernández ◽  
Francisco J. Rey-Martínez

The main target of climate change policies in the majority of industrialized countries is to reduce energy consumption in their facilities, which would reduce the carbon emissions that are generated. Through this idea, energy management plans are developed, energy reduction targets are established, and energy-efficient technologies are applied to achieve high energy savings, which are environmentally compatible. In order to evaluate the impact of their operations and investments, companies promote measures of performance in their energy management plans. An integral part of measuring energy performance is the establishment of energy baselines applicable to the complete facility that provide a basis for evaluating energy efficiency improvements and incorporating energy performance indicators. The implementation of energy management systems in accordance with the requirements of ISO Standard 50001 is a contribution to the aim and strategies for improving cleaner production in industries. This involves an option for the industry to establish energy benchmarks to evaluate performance, predict energy consumption, and align production with the lowest possible consumption of primary and secondary forms of energy. Ultimately, this goal should lead to the manufacturing of cleaner products that are environmentally friendly, energy efficient, and are in accordance with the global environmental targets of cleaner manufacturing. This paper discusses an alternative for establishing energy baselines for the industrial sector in which several products are produced from a single raw material, and we determined the energy consumption of each product and its impact on the overall efficiency of the industry at the same time. The method is applied to the plastic injection process and the result is an energy baseline (EBL) in accordance with the requirements of ISO 50001, which serves as a reference for determining energy savings. The EBL facilitates a reduction in energy consumption and greenhouse gas emissions in sectors such as plastics, a sector which accounts for 15% of Colombia’s manufacturing GDP.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7638
Author(s):  
Zbigniew Kobus ◽  
Monika Krzywicka ◽  
Anna Pecyna ◽  
Agnieszka Buczaj

This study investigated the impact of sonication parameters on the efficiency of the extraction of bioactive substances from hawthorn berries. The ultrasonic treatment was performed in two modes: continuous and pulse. In the pulse mode, the samples were sonicated with the following processor settings: 1 s on-2 s off. The effective ultrasonic processor times were 5, 10, and 15 min, and the total extraction times were 15 min, 30 min, and 45 min. The content of total polyphenols and total anthocyanins was determined by a spectrophotometric method. We show that the operating mode of the processor affects extraction efficiency, energy consumption and unit energy inputs. Extraction supported by a pulsating ultrasonic field allowed saving from 20% to 51% of energy with a simultaneous higher efficiency of the process. In addition, we show that the unit energy consumption in the pulsed mode was about 40% to 68% lower than the energy consumption in the case of continuous operation.


2012 ◽  
Vol 616-618 ◽  
pp. 1578-1584
Author(s):  
Fang Yi Li ◽  
Wei Dong Liu

As a driving force of economic growth, China’s export was affected by global economic crisis during 2008~2010. This paper aims to assess the impact of economic crisis on China’s energy consumption during the crisis. Contributions of energy efficiency, domestic final use, exports and imports to energy consumption change were clarified using methodology involves structural decomposition analysis based on input-output price model. In 2009, exports of energy-related and raw material sectors were seriously impacted by economic crisis, with energy use dramatically decreased. However, economic stimulus plan implemented by central government provided a great boost to energy consumption growth. According to the study, quantity and structural adjustment of export is one of the important ways to reduce energy consumption in a short time. But in a long term, consumption control and energy efficiency improvement are unsubstitutable.


Materials ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3003
Author(s):  
Karol Kupryaniuk ◽  
Tomasz Oniszczuk ◽  
Maciej Combrzyński ◽  
Wojciech Czekała ◽  
Arkadiusz Matwijczuk

The aim of the study is to determine the energy consumption of the extrusion-cooking process of corn straw under various conditions (screw speed, moisture content), water absorption measurements and water solubility indices as well as biogas efficiency evaluation. The extrusion-cooking of corn straw was carried out using a single screw extruder with L/D = 16:1 at various rotational screw speeds (70, 90, and 110 rpm) and with various initial moisture content of raw material (25 and 40%). Prior to the process, the moisture content of the raw material was measured, and next, it was moistened to 25 and 40% of dry matter. For example, at 70 rpm extruder screw speed, the temperature range was 126–150 °C. Energy consumption of straw pretreatment through extrusion-cooking was assessed in order to evaluate the possibility of using the process in an agricultural biogas plant. Biogas and methane efficiency of substrates after extrusion was tested in a laboratory scale biogas plant and expressed as a volume of cumulative methane production for fresh matter, dry matter, and dry organic matter. Pretreated corn straw moistened to 25% and processed at 110 rpm during the extrusion-cooking processing produced the most advantageous effect for methane and biogas production (51.63%) efficiency as compared to corn straw without pretreatment (49.57%). Rotational speed of the extruder screw influenced biogas and methane production. With both dry matter and dry organic matter, the increase of rotational speed of the extruder screw improved the production of cumulated biogas and methane. Pretreatment of corn straw has a positive effect on the acquisition of cumulated methane (226.3 Nm3 Mg−1 for fresh matter, 243.99 Nm3 Mg−1 for dry matter, and 254.83 Nm3 Mg−1 for dry organic matter). Preliminary analysis of infrared spectra revealed changes in the samples also at the molecular level, thus opening up the possibility of identifying marker bands that account for specific degradation changes.


Sign in / Sign up

Export Citation Format

Share Document