scholarly journals Structural Tests of Freight Wagons on the Basis of Signals Generated By Piezoelectric Macro Fiber Composites

2017 ◽  
Vol 11 (3) ◽  
pp. 210-216 ◽  
Author(s):  
Marek Płaczek ◽  
Andrzej Wróbel ◽  
Andrzej Buchacz

AbstractPaper presents a report of a research work that concerns possibilities of freight wagons modernization using new composite materials. The main aim of presented work was to verify the possibility of inference from the dynamic response of the wagon about the changes in its technical condition. During the presented works tests on real objects were carried out using Macro Fiber Composite (MFC) piezoelectric transducers glued to the freight wagon’s frame. The dynamical response of the wagon was measured while the object was driving. On the next stage the measured signal was generated on a laboratory stand using electrodynamic modal shaker and vibrations of the laboratory model were measured. Measured signals were juxtaposed on charts and analysed. The aim of this work was to verify if it is possible to detect the change in the system using measurements of vibrations that are being generated during exploitation of the freight wagon.

Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2264
Author(s):  
Raphael H. M. Reis ◽  
Fabio C. Garcia Filho ◽  
Larissa F. Nunes ◽  
Veronica S. Candido ◽  
Alisson C. R. Silva ◽  
...  

Fibers extracted from Amazonian plants that have traditionally been used by local communities to produce simple items such as ropes, nets, and rugs, are now recognized as promising composite reinforcements. This is the case for guaruman (Ischinosiphon körn) fiber, which was recently found to present potential mechanical and ballistic properties as 30 vol% reinforcement of epoxy composites. To complement these properties, Izod impact tests are now communicated in this brief report for similar composites with up to 30 vol% of guaruman fibers. A substantial increase in impact resistance, with over than 20 times the absorbed energy for the 30 vol% guaruman fiber composite, was obtained in comparison to neat epoxy. These results were statistically validated by Weibull analysis, ANOVA, and Tukey’s test. Scanning electron microscopy analysis disclosed the mechanisms responsible for the impact performance of the guaruman fiber composites.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4116
Author(s):  
Krzysztof Siodla ◽  
Aleksandra Rakowska ◽  
Slawomir Noske

A medium voltage (MV) cable network is a substantial component of the distribution network. Present management of this grid segment is mainly based on the failure rate analysis, i.e., a rise in the number and kind of faults on the actual line means that its technical condition is getting worse. The efficiency of the power system is low and additional costs of repair works, supply interruption, difficulties in the investment planning and operation and maintenance works are necessary. The aim of the R&D works done in the realised project is to implement the management of the MV cable network based on the estimated condition of the individual cable line, obtained from diagnostic measurements. The diagnostic investigations of the cable lines are the reference. Many years of research work have led to the development of the Health Index based on diagnostic, technical and service data.


Author(s):  
Krzysztof Nadolny ◽  
Wojciech Kapłonek ◽  
Marzena Sutowska ◽  
Paweł Sutowski ◽  
Piotr Myśliński ◽  
...  

AbstractRaw pine wood processing and especially its mechanical processing constitute a significant share among technological operations leading to obtaining a finished product. Stable implementation of machining operations, ensuring long-term repeatable processing results depends on many factors, such as quality and invariability of raw material, technical condition of technological equipment, adopted parameters of work, qualifications and experience of operators, as well as preparation and properties of the machining tools used. It seems that the greatest potential in the search for opportunities to increase the efficiency of machining operations has the modification of machining tools used in it. This paper presents the results of research work aimed at determining how the life of cutting tools used in planing operations of wet pine wood is affected by the application of chromium aluminum nitride (AlCrN) coating to planar industrial planing knives in the process of physical vapour deposition. For this purpose operational tests were carried out under production conditions in a medium-sized wood processing company. The study compares the effective working time, rounding radius, the profile along the knife (size of worn edge displacement, wear area of the cutting edge), selected texture parameters of the planar industrial planing knife rake face and visual analyses of cutting edge condition of AlCrN-coated planar knives and unmodified ones. The obtained experimental results showed the possibility of increasing the life of AlCrN-coated knives up to 154% compared to the results obtained with uncoated ones. The proposed modification of the operational features of the knives does not involve any changes in the technological process of planing, does not require any interference with the machining station nor its parameters, therefore enabling rapid and easy implementation into industrial practice.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1198
Author(s):  
Yu’an Hu ◽  
Mei He ◽  
Kate Semple ◽  
Meiling Chen ◽  
Hugo Pineda ◽  
...  

Bamboo fiber composite (BFC) is a unidirectional and continuous bamboo fiber composite manufactured by consolidation and gluing of flattened, partially separated bamboo culm strips into thick and dense panels. The composite mechanical properties are primarily influenced by panel density, its variation and uniformity. This paper characterized the horizontal density distribution (HDD) within BFC panels and its controlling factors. It revealed that HDD follows a normal distribution, with its standard deviation (SD) strongly affected by sampling specimen size, panel thickness and panel locations. SD was lowest in the thickest (40 mm) panel and largest-size (150 × 150-mm2) specimens. There was also a systematic variation along the length of the BFC due to the tapering effect of bamboo culm thickness. Density was higher along panel edges due to restraint from the mold edges during hot pressing. The manual BFC mat forming process is presented and found to effectively minimize the density variation compared to machine-formed wood composites. This study provides a basic understanding of and a quality control guide to the formation uniformity of BFC products.


Author(s):  
Faris M. AL-Oqla

The available potential plant waste could be worthy material to strengthen polymers to make sustainable products and structural components. Therefore, modeling the natural fiber polymeric-based composites is currently required to reveal the mechanical performance of such polymeric green composites for various green products. This work numerically investigates the effect of various fiber types, fiber loading, and reinforcement conditions with different polymer matrices towards predicting the mechanical performance of such natural fiber composites. Cantilever beam and compression schemes were considered as two different mechanical loading conditions for structural applications of such composite materials. Finite element analysis was conducted to modeling the natural fiber composite materials. The interaction between the fibers and the matrices was considered as an interfacial friction force and was determined from experimental work by the pull out technique for each polymer and fiber type. Both polypropylene and polyethylene were considered as composite matrices. Olive and lemon leaf fibers were considered as reinforcements. Results have revealed that the deflection resistance of the natural fiber composites in cantilever beam was enhanced for several reinforcement conditions. The fiber reinforcement was capable of enhancing the mechanical performance of the polymers and was the best in case of 20 wt.% polypropylene/lemon composites due to better stress transfer within the composite. However, the 40 wt.% case was the worst in enhancing the mechanical performance in both cantilever beam and compression cases. The 30 wt.% of polyethylene/olive fiber was the best in reducing the deflection of the cantilever beam case. The prediction of mechanical performance of natural fiber composites via proper numerical analysis would enhance the process of selecting the appropriate polymer and fiber types. It can contribute finding the proper reinforcement conditions to enhance the mechanical performance of the natural fiber composites to expand their reliable implementations in more industrial applications.


2018 ◽  
Vol 25 (1) ◽  
pp. 85-93 ◽  
Author(s):  
Niharika Mohanta ◽  
Samir K. Acharya

AbstractThis experimental study was conducted to investigate the effect of NaOH concentration and treatment time on the flexural properties ofLuffa cylindricafiber-reinforced epoxy composites. Significant improvement (up to 84.92%) in the flexural properties for the treated fiber composite compared with the untreated fiber composite was observed. Both treated and untreated fiber composites were then subjected to different environmental treatments (saline water, distilled water, and subzero temperature). To find out the changes in flexural strength immediately after treatment, the same test was carried out on the composites. Degradation in the flexural strength of both treated and untreated fiber composites, when subjected to environmental treatments, was observed. They were found within the range of 2%–20% and were found to be least in subzero treatment. The SEM micrograph indicates that alkali treatment is effective in improving the adhesion between the fiber and matrix.


2018 ◽  
Vol 775 ◽  
pp. 36-42 ◽  
Author(s):  
Xun Lai He ◽  
Jun Hui Yin ◽  
Zhen Qian Yang ◽  
Hong Wei Liu

Carbon fiber composite material with light weight, high strength, corrosion resistance and other characteristics of its impact damage mechanism is different from the traditional metal materials. In this paper, the quasi-static compression of carbon fiber composites was carried out by using a material testing machine to analyze the damage mechanism. The Hopkinson bar technology was used to test the dynamic mechanical properties. The damage mechanism of the carbon fiber composites under dynamic compressive loading was studied. Stress - Strain relationship of composites under Quasi - static and dynamic compressive load. It is found that the main failure mode of out-of-plane direction of carbon fiber composite laminates is brittle shear failure, while the in-plane failure mode shows the properties of brittle materials.


Author(s):  
Yasushi Ikei ◽  
Shuichi Fukuda

Abstract The authors have developed tactile displays which have vibrating pins to convey the surface texture sensation of object surfaces to the user’s fingertip. The tactile sensation intensity scaling was performed to obtain a sensation scale of the display by means of the JND (just noticeable difference) method. One dimensional curves on the scale were displayed to investigate the human sensitivity to an intensity change rate. A tactile texture presentation method based on the image of an object surface is introduced. Two kinds of experiment were performed to discuss the feature of the method. Texture discrimination is the first one, in which the effect of texture element size to the correct separation was discussed. Then the sensations produced by the display and those by real objects were compared regarding several samples that had a major feature of vertical lines and of not containing low frequencies. The results are summarized, which is followed by the future research work.


2008 ◽  
Vol 385-387 ◽  
pp. 421-424
Author(s):  
Yong Li Zhao ◽  
Jie Li ◽  
Ming Jin

In this paper, the experimental investigation into the enhancement of mechanical strength in shape memory alloy (SMA) fiber composites is made by using knotted fiber at the two ends instead of straight fiber. TiNi SMA fiber with both ends knotted is used for purpose of better ensuring stress transfer from the matrix to the fiber than straight fiber. Tension test is carried out above the austenitic finish temperature in air. Specimens are heated by means of electrical resistive lamplight heating. The results indicate that the mechanical strength is larger in the knotted fiber composite than in the straight fiber composite. Knotted fiber exerts the superiority of TiNi SMA fiber composite.


Sign in / Sign up

Export Citation Format

Share Document