Biomaterials for hip implants – important considerations relating to the choice of materials

2017 ◽  
Vol 13 (3) ◽  
Author(s):  
Mieczysław Choroszyński ◽  
Mieczysław Rorbert Choroszyński ◽  
Stanisław Jan Skrzypek

AbstractThis article is a review of important material requirements for hip biomaterials including their response to the body environment (biocompatibility), mechanical properties, wear resistance, fretting corrosion and availability as well as the price. The application of proper biomaterials for hip implants is one of the major focal points in this article. Background information is also provided on metals used in other prosthetic devices and implant components. Titanium and its alloys, cobalt base alloys and stainless steels (bio-steels) are used for load-bearing hip implants. These three groups of metallic materials will be introduced and discussed in detail. Metals and their alloys are crystalline materials since their properties depend on the crystal lattice, chemical and phase compositions, grain size, lattice defects, crystalline texture and residual micro- and macro-stresses. All these features of biomaterials are formed during technological manufacturing, such as metallurgical process, solidification, plastic deformation (rolling and forging), machining, heat treatment and coating. All these technological processes work in optimal conditions in order to achieve the optimal microstructure and mechanical, chemical and biological properties. Amongst the above-mentioned particular properties of biomaterials, fretting is a major concern as regards hip implants at the femoral head and neck taper interface. Additional important mechanisms of interaction between the implant and the human body must be taken into account, i.e. diffusion stream of foreign particles and atoms from the implant to body fluids, to the tissue and to the bone. These foreign particles and atoms are released from the implant to the body fluid, to the tissue and to the bone as wear product during use. All together they contribute to the wear, i.e. loss of weight, strength or volume of hip components. Wear rates of ultrahigh molecular weight polyethylene mated against Ti-6Al-4V are significantly greater than the ones for Co-Cr-Mo alloys. Therefore, thermochemical surface treatments like diffusion ion nitriding should be applied to increase the resistance of titanium alloys to wear. Austenitic stainless steels are also used for temporary applications, but they have lower resistance to pitting corrosion than titanium and cobalt alloys. The purpose of the paper is to introduce a group of metallic materials, which is often chosen for surgical hip implants. Conclusions of the paper refer to information which support important medical and patient decisions on hip implants. Also, the development of biomaterials, their treatments, properties, surface layers and coatings are considered. All these features develop over time and need synergy and experience in the progress of the biomedical, mechanical and materials science.

Author(s):  
Paul Sunday Nnamchi ◽  
Camillus Sunday Obayi

Self-healing materials (SHM’s) is an emerging class of smart materials, which are capable of autonomous or spontaneous repair of their damage under external stimuli, such as heat, light, and solvent, to the original or near original functionalities much like the biological organisms. The emergence of self-healing in metallic materials presents an exciting paradigm for an ideal combination of metallic and biological properties. The driving force behind this effort is to decrease the consequences of accidents, reduction of cost and extending the service life of metallic components. While previous reviews have focused on self-healing in polymers, composite, concrete and cementous materials, and ceramic, discussions about self-healing in metallic materials remains scarce and the survey of literatures suggests Ti-based self-healing materials known to be biocompatible in human body is rare. The present chapter examines the art of self-healing in titanium-based alloys with the scope to provide an overview of recent advancements and to highlight current problems and perspectives with respect to potential application.


2021 ◽  
Vol 9 (4) ◽  
pp. 868
Author(s):  
Max Maurin ◽  
Florence Fenollar ◽  
Oleg Mediannikov ◽  
Bernard Davoust ◽  
Christian Devaux ◽  
...  

SARS-CoV-2 is currently considered to have emerged from a bat coronavirus reservoir. However, the real natural cycle of this virus remains to be elucidated. Moreover, the COVID-19 pandemic has led to novel opportunities for SARS-CoV-2 transmission between humans and susceptible animal species. In silico and in vitro evaluation of the interactions between the SARS-CoV-2 spike protein and eucaryotic angiotensin-converting enzyme 2 (ACE2) receptor have tentatively predicted susceptibility to SARS-CoV-2 infection of several animal species. Although useful, these data do not always correlate with in vivo data obtained in experimental models or during natural infections. Other host biological properties may intervene such as the body temperature, level of receptor expression, co-receptor, restriction factors, and genetic background. The spread of SARS-CoV-2 also depends on the extent and duration of viral shedding in the infected host as well as population density and behaviour (group living and grooming). Overall, current data indicate that the most at-risk interactions between humans and animals for COVID-19 infection are those involving certain mustelids (such as minks and ferrets), rodents (such as hamsters), lagomorphs (especially rabbits), and felines (including cats). Therefore, special attention should be paid to the risk of SARS-CoV-2 infection associated with pets.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hailong Dai ◽  
Shouwen Shi ◽  
Lin Yang ◽  
Can Guo ◽  
Xu Chen

Abstract Hydrofluoric acid (HF) or fluoride ion corrosion issues are often encountered in many fields, which have attracted extensive research due to its strong corrosiveness. In this paper, a critical review is presented based on recent progress on HF corrosion. In view of the discrepancy of fluoride ion compared with other ions, the special attack characteristics of fluoride ion are firstly discussed. Afterwards, the corrosion mechanisms of stainless steels, nickel-based alloys, and titanium alloys in HF solution or fluoride ion-containing environment are reviewed, and three typical corrosion behaviors are summarized, which are essentially weakening process of passivation of metallic materials. The effects of influencing factors (e.g. alloying elements, environmental factors, and stress, etc.) on HF corrosion are also discussed, which involve changes in passivation mechanism, the influence of HF attack mode and multiple damage mechanisms due to mechanical–chemical coupling. Finally, future research works on HF corrosion are proposed.


2014 ◽  
Vol 891-892 ◽  
pp. 1639-1644 ◽  
Author(s):  
Kazutaka Mukoyama ◽  
Koushu Hanaki ◽  
Kenji Okada ◽  
Akiyoshi Sakaida ◽  
Atsushi Sugeta ◽  
...  

The aim of this study is to develop a statistical estimation method of S-N curve for iron and structural steels by using their static mechanical properties. In this study, firstly, the S-N data for pure iron and structural steels were extracted from "Database on fatigue strength of Metallic Materials" published by the Society of Materials Science, Japan (JSMS) and S-N curve regression model was applied based on the JSMS standard, "Standard Evaluation Method of Fatigue Reliability for Metallic Materials -Standard Regression Method of S-N Curve-". Secondly, correlations between regression parameters and static mechanical properties were investigated. As a result, the relationship between the regression parameters and static mechanical properties (e.g. fatigue limit E and static tensile strength σB) showed strong correlations, respectively. Using these correlations, it is revealed that S-N curve for iron and structural steels can be predicted easily from the static mechanical properties.


2021 ◽  
Vol 56 (18) ◽  
pp. 10707-10744
Author(s):  
Jonathan Torres ◽  
Ali P. Gordon

AbstractThe small punch test (SPT) was developed for situations where source material is scarce, costly or otherwise difficult to acquire, and has been used for assessing components with variable, location-dependent material properties. Although lacking standardization, the SPT has been employed to assess material properties and verified using traditional testing. Several methods exist for equating SPT results with traditional stress–strain data. There are, however, areas of weakness, such as fracture and fatigue approaches. This document outlines the history and methodologies of SPT, reviewing the body of contemporary literature and presenting relevant findings and formulations for correlating SPT results with conventional tests. Analysis of literature is extended to evaluating the suitability of the SPT for use with additively manufactured (AM) materials. The suitability of this approach is shown through a parametric study using an approximation of the SPT via FEA, varying material properties as would be seen with varying AM process parameters. Equations describing the relationship between SPT results and conventional testing data are presented. Correlation constants dictating these relationships are determined using an accumulation of data from the literature reviewed here, along with novel experimental data. This includes AM materials to assess the fit of these and provide context for a wider view of the methodology and its interest to materials science and additive manufacturing. A case is made for the continued development of the small punch test, identifying strengths and knowledge gaps, showing need for standardization of this simple yet highly versatile method for expediting studies of material properties and optimization.


Development ◽  
1992 ◽  
Vol 114 (3) ◽  
pp. 711-720 ◽  
Author(s):  
H.V. Isaacs ◽  
D. Tannahill ◽  
J.M. Slack

We have cloned and sequenced a new member of the fibroblast growth factor family from Xenopus laevis embryo cDNA. It is most closely related to both mammalian kFGF (FGF-4) and FGF-6 but as it is not clear whether it is a true homologue of either of these genes we provisionally refer to it as XeFGF (Xenopus embryonic FGF). Two sequences were obtained, differing by 11% in derived amino acid sequence, which probably represent pseudotetraploid variants. Both the sequence and the behaviour of in vitro translated protein indicates that, unlike bFGF (FGF-2), XeFGF is a secreted molecule. Recombinant XeFGF protein has mesoderm-inducing activity with a specific activity similar to bFGF. XeFGF mRNA is expressed maternally and zygotically with a peak during the gastrula stage. Both probe protection and in situ hybridization showed that the zygotic expression is concentrated in the posterior of the body axis and later in the tailbud. Later domains of expression were found near the midbrain/hindbrain boundary and at low levels in the myotomes. Because of its biological properties and expression pattern, XeFGF is a good candidate for an inducing factor with possible roles both in mesoderm induction at the blastula stage and in the formation of the anteroposterior axis at the gastrula stage.


2020 ◽  
Vol 10 (1) ◽  
pp. 43-48
Author(s):  
A. P. Paliy ◽  
S. O. Gujvinska ◽  
L. P. Livoshchenko ◽  
L. I. Nalivayko ◽  
Ye. M. Livoshchenko ◽  
...  

To maintain a stable composition of the gastrointestinal tract microflora in farm animals it is necessary to use probiotic agents to ensure the full functioning of the digestive, hormonal, and immune systems of the body. Most modern probiotics include lactic acid bacteria and bifidobacteria, which are the most physiologically valuable components of a healthy organism’s an indigenous microflora. The aim of this study was to provide indication and identification from the milk of healthy cows and gastric tract of healthy pigs and calves of the genus bacteria Lactobacillus, Bifidobacterium, and Lactococcus. The objects of research were cultures of microorganisms isolated from cows milk (82), the gastrointestinal tract of cattle (317), and piglets of different age groups (114). Bacteriological studies were carried out on the basis of the veterinary sanitation and parasitology laboratory of the National Scientific Center "Institute of Experimental and Clinical Veterinary Medicine" (Kharkiv) in accordance with current regulatory documents. According to the research of the gastrointestinal tract of clinically healthy calves and piglets isolated and typified to 317 and 114 cultures of microorganisms, the species composition of the microflora (82 bacterial cultures) of the cisternous and parenchymatous milk of clinically healthy cows was determined. A total of 513 isolates of microorganisms were isolated, including: Enterobacter spp. –2 (0,39%), Staphylococcus spp. – 7 (1,37%), Bacillus spp. – 11 (2,14%), Enterococcus spp. – 33 (6.43%), Lactococcus spp. – 75(14,62%), Bifidоbacterium spp. – 170 (33,14%), and Lactobacillus spp. – 215 (41,91%). In the study of the biological properties of isolated microorganisms Lactobacillus spp. (215) established their species identity: L. brevis – 7 (3.26%), L. delbrueckii – 9 (4,19%), L. acidophilus – 21 (9,77%), L. fermentum – 23 (10,69%), L. casei – 57 (26,51%), and L. plantarum – 98 (45.58%). Cultures of Bifidobacterium spp. (170) belong to B. suis – 2 (1,18%), B. breve – 7 (4,12%), B. lactentis – 15 (8,82%), B. bifidum – 21 (12,35%), B. longum – 22 (12,94%), B. infantis – 25 (14,71%), and B. adolescentis – 78 (45,88%). From samples of biological material of farm animals, 75 cultures of the genus Lactococcus spp. were isolated (75) of which Lactococcus lactis is representative. Isolated bacteria Lactobacillus spp., Bifidobacterium spp. and Lactococcus spp. promising when creating innovative probiotic products for farm animals.


Author(s):  
Ramakoteswara Rao N ◽  
Kranthi kiran Reddy E ◽  
Leena Gahane ◽  
SV Ranganayakulu

Nano technology is the multi disciplinary science and technology, which has emerged as new science exploiting specific phenomena and direct manipulation of materials on nanoscale. Nanotechnology deals with the physical, chemical, and biological properties of structures and their parts at nanoscale dimensions. It's established on the concept by creating functional structures by controlling corpuscles and molecules on a one-by-one basis by different physical and chemical synthesis methods. Developments in materials science and, nano biotechnology is especially forestalled to provide elevates in dental sciences and initiations in oral health-related diagnostic and therapeutical methods. Keywords: Nano Science, dentistry, Nanocomposite, Nanorobots, Nanomaterials.


2019 ◽  
Vol 1 (1) ◽  
pp. 012-018

Medical engineering, as an auspicious conjunction between healthcare practice, biotechnology and materials science, has emerged over time with the aim to improve human’s health. Cornea, an essential part of the eye responsible for most of its optical power, suffers every day due to accidents or various diseases. To avoid complications and overcome limitations of conventional transplantation and other surgical procedures, biomaterials and bioprinting proved beneficial can be used to design optimal devices for corneal implantation. During medical evolution, biopolymers have been used especially in tissue engineering applications, due to their high elasticity and flexibility, adaptable optical properties and tunable microstructure. Natural polymers are well accepted by the body, their offer support for tissue regeneration and, in most cases, they are easy to obtain. Beside natural-derived biopolymers, synthetic polymers can be used in bioprinting to develop performance-enhanced platforms for corneal bioengineering. Bioprinting represents an innovative method to obtain a corneal implant and has the advantage to enable the facile control over some specific properties, such as thickness, color, elasticity or shape.


2016 ◽  
pp. 110-129
Author(s):  
Ali Alshammari ◽  
David Whittinghill

Single and multiplayer serious Kinect games have been used in many different areas, including education. Due to its relative newness as a technology, a dearth of literature exists concerning the requirements for the use of Kinect games in educational settings. A comprehensive review was conducted to include various perspectives in order to provide background information on the existing research base that upholds the educational uses of these games. The review was built on empirical and theoretical studies conducted in the area of multiplayer Kinect games. A total of (748) articles were screened and (71) coded. While an abundance of convergent evidence from closely related domains has been produced on the subject, providing a set of recommendations for its proper usage; few studies have focused specifically on the role, development and effects of multiplayer Kinect games in educational settings. The potential for Kinect games to enhance learning experiences within educational contexts is promising; however, care must be taken to account for physical safety, emotional safety, and activity structure. Specific recommendations for addressing these important aspects of the use of multiplayer Kinect games are described in detail in the body of this manuscript.


Sign in / Sign up

Export Citation Format

Share Document