scholarly journals Self-Healing in Titanium Alloys: A Materials Science Perspective

Author(s):  
Paul Sunday Nnamchi ◽  
Camillus Sunday Obayi

Self-healing materials (SHM’s) is an emerging class of smart materials, which are capable of autonomous or spontaneous repair of their damage under external stimuli, such as heat, light, and solvent, to the original or near original functionalities much like the biological organisms. The emergence of self-healing in metallic materials presents an exciting paradigm for an ideal combination of metallic and biological properties. The driving force behind this effort is to decrease the consequences of accidents, reduction of cost and extending the service life of metallic components. While previous reviews have focused on self-healing in polymers, composite, concrete and cementous materials, and ceramic, discussions about self-healing in metallic materials remains scarce and the survey of literatures suggests Ti-based self-healing materials known to be biocompatible in human body is rare. The present chapter examines the art of self-healing in titanium-based alloys with the scope to provide an overview of recent advancements and to highlight current problems and perspectives with respect to potential application.

2010 ◽  
Vol 441 ◽  
pp. 3-29 ◽  
Author(s):  
M. Vila ◽  
Miguel Manzano ◽  
Maria Vallet-Regí

In the recent years the driving force for technological change in many respects has shifted towards the design and process of materials that offer a set of responses to external stimuli or environmental conditions. These materials are called “smart materials”. Such responses are designed to fulfil the range of scenarios to which a material or structure may be exposed providing them with a particular functionality. These materials are not only useful because of their structural, chemical, physical or mechanical properties; they can also perform an action within a process. It has been described that smart structures exhibit one or more of the following features; they can act as sensors or actuators within a structural material or bonded in the surface; or they have controllable capabilities that permit to respond to the stimuli according to a prescribed function. These materials become intelligent when they have the ability to respond intelligently and autonomously to changing conditions. There are lots of possibilities within the term functional “smart materials” but in all of them, the term is used to describe systems which respond to a stimulus in a useful and predictable manner. Nowadays it is widely known the useful capability of, piezoelectric, electro-optic, magnetic, electro-mechanic materials, etc…that respond to stimuli such as, electric or magnetic fields, stress, temperature, moisture or pH. These multifunctional character and capability of biomaterials makes them suitable for a big number of applications in every order of human activity, from photochromic lenses for sunglasses to military and aerospace uses. They are already a big part of the market in the engineering industry.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (4) ◽  
pp. 399-407 ◽  
Author(s):  
Massoud Amin ◽  
John Stringer

AbstractIn the coming decades, electricity's share of total global energy is expected to continue to grow, I and more intelligent processes will be introduced into the electric power delivery (transmission and distribution) networks. It is envisioned that the electric power grid will move from an electromechanically controlled system to an electronically controlled network in the next two decades. A key challenge is how to redesign, retrofit, and upgrade the existing electromechanically controlled system into a smart self-healing grid that is driven by a well-designed market approach. Revolutionary developments in both information technology and materials science and engineering promise significant improvements in the security, reliability, efficiency, and cost effectiveness of electric power delivery systems. Focus areas in materials and devices include sensors, smart materials and structures, microfabrication, nanotechnology, advanced materials, and smart devices.


2017 ◽  
Vol 13 (3) ◽  
Author(s):  
Mieczysław Choroszyński ◽  
Mieczysław Rorbert Choroszyński ◽  
Stanisław Jan Skrzypek

AbstractThis article is a review of important material requirements for hip biomaterials including their response to the body environment (biocompatibility), mechanical properties, wear resistance, fretting corrosion and availability as well as the price. The application of proper biomaterials for hip implants is one of the major focal points in this article. Background information is also provided on metals used in other prosthetic devices and implant components. Titanium and its alloys, cobalt base alloys and stainless steels (bio-steels) are used for load-bearing hip implants. These three groups of metallic materials will be introduced and discussed in detail. Metals and their alloys are crystalline materials since their properties depend on the crystal lattice, chemical and phase compositions, grain size, lattice defects, crystalline texture and residual micro- and macro-stresses. All these features of biomaterials are formed during technological manufacturing, such as metallurgical process, solidification, plastic deformation (rolling and forging), machining, heat treatment and coating. All these technological processes work in optimal conditions in order to achieve the optimal microstructure and mechanical, chemical and biological properties. Amongst the above-mentioned particular properties of biomaterials, fretting is a major concern as regards hip implants at the femoral head and neck taper interface. Additional important mechanisms of interaction between the implant and the human body must be taken into account, i.e. diffusion stream of foreign particles and atoms from the implant to body fluids, to the tissue and to the bone. These foreign particles and atoms are released from the implant to the body fluid, to the tissue and to the bone as wear product during use. All together they contribute to the wear, i.e. loss of weight, strength or volume of hip components. Wear rates of ultrahigh molecular weight polyethylene mated against Ti-6Al-4V are significantly greater than the ones for Co-Cr-Mo alloys. Therefore, thermochemical surface treatments like diffusion ion nitriding should be applied to increase the resistance of titanium alloys to wear. Austenitic stainless steels are also used for temporary applications, but they have lower resistance to pitting corrosion than titanium and cobalt alloys. The purpose of the paper is to introduce a group of metallic materials, which is often chosen for surgical hip implants. Conclusions of the paper refer to information which support important medical and patient decisions on hip implants. Also, the development of biomaterials, their treatments, properties, surface layers and coatings are considered. All these features develop over time and need synergy and experience in the progress of the biomedical, mechanical and materials science.


2013 ◽  
Vol 701 ◽  
pp. 87-92 ◽  
Author(s):  
M.R. Hassan ◽  
M. Mehrpouya ◽  
Sattar Emamian ◽  
M.N. Sheikholeslam

Self-healing has usually an emphasis on special materials that is metallic materials. When there is a minor damage, almost all biological organisms, even complex ones, have the ability to repair themselves. Recently, a novel field of materials science is constituted by self-healing in organic materials or material systems and it is rapidly expanding. These materials have a particular ability to heal themselves. The initial crack is healed to the point that upon reloading, a new crack is formed next to the original, rather than the original crack reopening. Only simple heating can reverse transformation and cause reinforcement for these cracks. The shape memory alloy wires are activated by heating the system and therefore the healing begins. Due to the heat, the wires relapse to their original shape at the shape change in martensite to austenite transition temperature. The concentration of most of the studies so far has been on polymers and ceramics and the reason is that it includes self-healing in non-metallic materials. Also, they are more convenient than including it in metallic materials. In this review paper the design principles of self-healing materials and their improvement methods are investigated.


Author(s):  
Bianca Pizzorno Backx

Materials science seeks the development of new materials with optimized characteristics. The union of various areas as chemistry, physics, nanotechnology, biology, and medicine catalyzes news materials. Smart materials react to external stimuli by modifying their chemical, mechanical, magnetic, optical, electrical, thermal properties. They have superior efficiency to the materials currently available and promise many advantages to their consumers. However, smart materials must be associated with sustainable technological progress. As a result of highly evolved technologies and intense laboratory research, their final characteristics must be connected with sustainable protocols. In addition to a significant difference associated with a wide application in various areas as textile industry, construction, medicine, drugs delivery, microorganisms’ detection, smart materials must not pollute from production to disposal, and more than that, they must seek compensation for the harmful effects of this evolution on nature. In this way, smart materials will be an excellent advantage for the future and the environment.


2020 ◽  
Vol 87 (6) ◽  
Author(s):  
Cheng Yan ◽  
Guoqiang Li

Abstract Chemically cross-linked thermoset shape memory polymers (TSMPs) are an important branch of smart materials due to their potentially wide applications in deplorable structures, soft robots, damage self-healing, and 4D printing. Further development and design of TSMP structures call for constitutive models. Although the Arruda–Boyce eight-chain model has been very successful and widely used for entropy-driven TSMPs, recent studies found that some new TSMPs, such as those using enthalpy as the primary driving force, show unit cells different from the eight-chain model. Considering that these new epoxy-based TSMP networks consist of a plenty of four-chain features, this study proposes a four-chain tetrahedron structure as the unit cell of the network to construct the constitutive model. In this model, Gibbs free energy is used to formulate the thermodynamic driving force. Then, by introducing a transition of the molecule deformation mechanism from that dominated by bond stretch to that dominated by bond angle opening, the traditional Langevin chain model is modified. It is found that this model can well capture the dramatic modulus change for the new TSMP in the thermomechanical experiments. Moreover, it shows that the original Treloar four-chain model and Arruda–Boyce eight-chain model underestimate the driving force for the enthalpy-driven TSMPs, and thus cannot well capture the thermomechanical behaviors. It is also found that under certain conditions, our four-chain model produces the same Cauchy stress as the eight-chain model does. This study may help researchers understand the thermomechanical response and design a special category of TSMPs with high recovery stress.


Author(s):  
Victor V. SINYAVSKIY

At the initiative of S.P.Korolev, in 1959, Special Design Bureau No.1 (now RSC Energia) established the High-temperature Power Engineering and Electric Propulsion Center which was tasked with development of nuclear electric propulsion for heavy interplanetary vehicles. Selected as the source of electric power was a nuclear power unit based on a thermionic converter reactor, and selected as the engine was a stationary low-voltage magnetoplasmodynamic (MPD) high-power (0.5–1.0 MW) thruster which had thousands of hours of service life. The paper presents the results of extensive efforts in research, development, design, materials science experiments, and tests on the MPD-thruster, including the results of development and 500-hours life tests of an MPD-thruster with a 500-600 kW electric power input that used lithium propellant. The world’s first lithium 17 kW MPD-thruster was built and successfully tested in space. The paper points out that to this day nobody has surpassed the then achievements of RSC Energia neither in thruster output during long steady-state operation, nor in performance and service life. Key words: Martian expeditionary vehicle, nuclear electric rocket propulsion system, electric rocket thruster, magnetoplasmodynamic thruster, lithium, cathode, anode, barium, electric propulsion tests in space.


2020 ◽  
Vol 05 ◽  
Author(s):  
Silas Santos ◽  
Orlando Rodrigues ◽  
Letícia Campos

Background: Innovation mission in materials science requires new approaches to form functional materials, wherein the concept of its formation begins in nano/micro scale. Rare earth oxides with general form (RE2O3; RE from La to Lu, including Sc and Y) exhibit particular proprieties, being used in a vast field of applications with high technological content since agriculture to astronomy. Despite of their applicability, there is a lack of studies on surface chemistry of rare earth oxides. Zeta potential determination provides key parameters to form smart materials by controlling interparticle forces, as well as their evolution during processing. This paper reports a study on zeta potential with emphasis for rare earth oxide nanoparticles. A brief overview on rare earths, as well as zeta potential, including sample preparation, measurement parameters, and the most common mistakes during this evaluation are reported. Methods: A brief overview on rare earths, including zeta potential, and interparticle forces are presented. A practical study on zeta potential of rare earth oxides - RE2O3 (RE as Y, Dy, Tm, Eu, and Ce) in aqueous media is reported. Moreover, sample preparation, measurement parameters, and common mistakes during this evaluation are discussed. Results: Potential zeta values depend on particle characteristics such as size, shape, density, and surface area. Besides, preparation of samples which involves electrolyte concentration and time for homogenization of suspensions are extremely valuable to get suitable results. Conclusion: Zeta potential evaluation provides key parameters to produce smart materials seeing that interparticle forces can be controlled. Even though zeta potential characterization is mature, investigations on rare earth oxides are very scarce. Therefore, this innovative paper is a valuable contribution on this field.


2019 ◽  
pp. 128-138
Author(s):  
V. S. Yagubov ◽  
A. V. Shchegolkov ◽  
A. V. Shchegolkov ◽  
N. R. Memetov

Developing "smart" materials with improved both structural and functional characteristics is one of the promising areas of materials science. Measuring the electrical resistance of CNTs-modified (various mass contents) polymers and in particular, elastomers during performing several tests (compression, stretching, and torsion) at a constant current is relevant in electrical engineering, mechanical engineering, aviation, and space industry. Changes in the elastomer shape under different types of testing lead to the destruction of macromolecules and the structuring of the material as a whole. Therefore, it is important to study the effect of CNTsbased modifying fillers on the elastomer. When compressing, stretching or twisting the nano-modified elastomer, along with the mutual movement of its macromolecular fragments and aggregates, the modifier particles also move, which generally determines the transport of electrons in the resulting structure and affects the physical and mechanical parameters of the composite material. To conduct studies, elastomers containing different amounts of a CNTs-based modifying filler were prepared. To investigate and elucidate relevant dependencies, a measuring system (MS) was constructed, which makes it possible to determine electrical resistance values of the composite material with different CNTs contents in the polymer matrix composition exposed to various mechanical loads. Basing the research results, it was established that the electrical resistance of the elastomer composites modified with 1.0–2.5 wt.% CNTs decreases when compressing from 0 to 100 N, whereas when the compression force ranges from 100 to 350 N, the electrical resistance remains unchanged. When the elastomer composites modified with 2–2.5 wt.% CNTs were stretched by 30–40 %, the electrical resistance was found to increase from 5·103 to 1.9·107 Ω.


Author(s):  
Xiao-Ling Zuo ◽  
Shao-Fan Wang ◽  
Xiao-Xia Le ◽  
Wei Lu ◽  
Tao Chen

Sign in / Sign up

Export Citation Format

Share Document