Penicillium piceum: a potential source for antimicrobial agents and β-lactamase inhibitors

Biologia ◽  
2015 ◽  
Vol 70 (1) ◽  
Author(s):  
Saurabh Dubey ◽  
Ketki Patil ◽  
Pooja Sharma ◽  
Ghanshyam D. Tandon

AbstractThere is an urgent need to discover new anti-microbial agents that can overcome the increasing antibiotic resistance posed by multidrug resistant, β-lactamase producing bacteria. β-Lactam antibiotics are structurally related through the presence of a core β-lactam ring. Resistant pathogens are able to produce β-lactamase enzymes that hydrolyze the β-lactam ring and inactivate the antibiotic. One approach to counteract this resistance is to develop β-lactamase inhibitors, which, on administration with β-lactams, restores the antibiotic activity for its continued clinical use. In the present study, a fungal Penicillium strain was isolated, identified and characterized for its antimicrobial and β-lactamase inhibition activities. The strain was identified as Penicillium piceum and was grown in suitable media under submerged cultivation. The antibacterial activity was observed against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Higher antimicrobial activity was observed against gram-positive bacteria as compared to gram-negative bacteria. A certain amount of antifungal activity was also observed against the fungal strains of Penicilium chrysogenum, Rhizopus stolonifer, Fusarium moniliforme, Aspergillus niger, Giberella fujikuroi and Saccharomyces cerevisiae. Iodometric and bioassay analyses confirmed that P. piceum produced β-lactamase inhibitors having activity against penicillinase (Bacillus cereus). Solvent-solvent extraction with butanol yielded a three-fold increase in β-lactamase inhibition activity. High-performance liquid chromatography analysis of the concentrated product proved it to be a single compound. The infrared (IR) spectrum of the compound was compared with the reference IR spectra of sulbactam sodium, tazobactam and potassium clavulanate. It was found to be different thereby inferring the need for extensive structural elucidation for future applications.

2020 ◽  
Vol 8 (2) ◽  
pp. 191 ◽  
Author(s):  
Despoina Koulenti ◽  
Elena Xu ◽  
Andrew Song ◽  
Isaac Yin Sum Mok ◽  
Drosos E. Karageorgopoulos ◽  
...  

Antimicrobial agents are currently the mainstay of treatment for bacterial infections worldwide. However, due to the increased use of antimicrobials in both human and animal medicine, pathogens have now evolved to possess high levels of multi-drug resistance, leading to the persistence and spread of difficult-to-treat infections. Several current antibacterial agents active against Gram-positive bacteria will be rendered useless in the face of increasing resistance rates. There are several emerging antibiotics under development, some of which have been shown to be more effective with an improved safety profile than current treatment regimens against Gram-positive bacteria. We will extensively discuss these antibiotics under clinical development (phase I-III clinical trials) to combat Gram-positive bacteria, such as Staphylococcus aureus, Enterococcus faecium and Streptococcus pneumoniae. We will delve into the mechanism of actions, microbiological spectrum, and, where available, the pharmacokinetics, safety profile, and efficacy of these drugs, aiming to provide a comprehensive review to the involved stakeholders.


2020 ◽  
Vol 8 (5) ◽  
pp. 639 ◽  
Author(s):  
Alexis Simons ◽  
Kamel Alhanout ◽  
Raphaël E. Duval

Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.


RSC Advances ◽  
2015 ◽  
Vol 5 (105) ◽  
pp. 86421-86427 ◽  
Author(s):  
Alaa S. Abd-El-Aziz ◽  
Christian Agatemor ◽  
Nola Etkin ◽  
David P. Overy ◽  
Russell G. Kerr

A redox-active, cationic organoiron complexes active against multidrug-resistant strain of Gram-positive bacteria is presented as a potential new lead structure for the design of antimicrobial agents.


2003 ◽  
Vol 47 (5) ◽  
pp. 1689-1693 ◽  
Author(s):  
Ian A. Critchley ◽  
Renée S. Blosser-Middleton ◽  
Mark E. Jones ◽  
Clyde Thornsberry ◽  
Daniel F. Sahm ◽  
...  

ABSTRACT The activity of daptomycin was assessed by using 6,973 gram-positive bacteria isolated at 50 United States hospitals in 2000 and 2001. Among the isolates of Streptococcus pneumoniae (n = 1,163) collected, the rate of penicillin resistance was 16.1%; rates of oxacillin resistance among Staphylococcus aureus isolates (n = 1,018) and vancomycin resistance among Enterococcus faecium isolates (n = 368) were 30.0 and 59.5%, respectively. Multidrug-resistant (MDR) phenotypes (isolates resistant to three or more different chemical classes of antimicrobial agents) accounted for 14.2% of S. pneumoniae isolates, 27.1% of S. aureus isolates, and 58.4% of E. faecium isolates. For all gram-positive species tested, MICs at which 90% of the isolates tested were inhibited (MIC90s) and MIC ranges for directed-spectrum agents (daptomycin, quinupristin-dalfopristin, and linezolid) were identical or highly similar for isolates susceptible or resistant to other agents or MDR. Daptomycin had a MIC90 of 0.12 μg/ml for both penicillin-susceptible and -resistant isolates of S. pneumoniae. Against oxacillin-resistant S. aureus daptomycin had a MIC90 of 0.5 μg/ml, and it had a MIC90 of 4 μg/ml against both vancomycin-susceptible and -resistant E. faecium. The MIC90s for daptomycin and other directed-spectrum agents were unaffected by the regional or anatomical origin of isolates or patient demographic parameters (patient age, gender, and inpatient or outpatient care). Our results confirm the gram-positive spectrum of activity of daptomycin and that its activity is independent of susceptibility or resistance to commonly prescribed and tested antimicrobial agents. This study may serve as a baseline to monitor future changes in the susceptibility of gram-positive species to daptomycin following its introduction into clinical use.


2010 ◽  
Vol 100 (1) ◽  
pp. 52-63 ◽  
Author(s):  
David P. Nicolau ◽  
Gary E. Stein

Foot complications are common in diabetic patients; foot ulcers are among the more serious consequences. These ulcers frequently become infected, and if not treated promptly and appropriately, diabetic foot infections can lead to septic gangrene and amputation. Foot infections may be classified as mild, moderate, or severe; this largely determines the approach to therapy. Staphylococcus aureus is the most common pathogen in these infections, and the increasing incidence of methicillin-resistant S aureus during the past two decades has further complicated antibiotic treatment. Chronic infections are often polymicrobial. Physiologic changes, and local and systemic inflammation, can affect the plasma and tissue pharmacokinetics of antimicrobial agents in diabetic patients, leading to impaired target-site penetration. Knowledge of the serum and tissue concentrations of antibiotics in diabetic patients is, therefore, important for choosing the optimal drug and dose. This article reviews the commonly used therapeutic options for treatment, including many newer antibiotics developed to target multidrug-resistant gram-positive bacteria, and includes available data relating specifically to the tissue penetration of these agents. (J Am Podiatr Med Assoc 100(1): 52–63, 2010)


2018 ◽  
Vol 2018 ◽  
pp. 1-3
Author(s):  
George Mwandia ◽  
Hari Polenakovik

We describe a rare infection with Nocardia spp. (N. pseudobrasiliensis species identification based on high-performance liquid chromatography analysis) in a 68-year-old renal transplant recipient. He presented with pneumonia complicated by hypoxic respiratory failure. He was allergic to sulphonamides. He was initially successfully treated with linezolid. However, he suffered severe sensory neuropathy after 4 months of therapy, necessitating linezolid cessation and completion of treatment with azithromycin. He had clinical and radiological resolution of his pneumonia and was disease free at subsequent follow-up 4 years later. This case highlights the need for alternative therapies for nocardiosis for patients that cannot be treated with sulphonamides due to allergies or/and infection with multidrug-resistant pathogens. It also illustrates the treatment limiting side effects of long-term therapy with linezolid.


2014 ◽  
Vol 50 (2) ◽  
pp. 391-399 ◽  
Author(s):  
Chuanqing Zhong ◽  
Guangxiang Cao ◽  
Xiaoqing Jin ◽  
Fengshan Wang

The objective of this study was to investigate the formation and forming mechanism of the related substance E in potassium clavulanate production. The impurity with retention time of 11.1 min in potassium clavulanate final product was confirmed as the related substance E by high performance liquid chromatography with tandem mass spectrometric detection (HPLC-MS/MS).The related substance E analysis during the production of clavulanic acid showed that this impurity could be formed during both the fermentation and purification processes, especially in the later fermentation stage, filtration concentration and back-extraction procedure. Clavulanic acid was the precursor of the related substance E. Studies on its forming mechanism showed that the related substance E was formed by the combination of the imino group of one molecule of clavulanic acid with the carboxyl group of another molecule of clavulanic acid with the opening of β-lactam ring. Results of a multi-factor orthogonal test confirmed that the concentration of clavulanic acid was the dominant factor to accelerate the reaction, while the temperature was another contributing factor. The pH 5.0-6.5 had little impact on the generation of the related substance E.


2013 ◽  
Vol 2013 ◽  
pp. 1-17 ◽  
Author(s):  
Ramar Perumal Samy ◽  
Jayapal Manikandan ◽  
Mohammed Al Qahtani

Traditional medicine plays a vital role for primary health care in India, where it is widely practiced to treat various ailments. Among those obtained from the healers, 78 medicinal plants were scientifically evaluated for antibacterial activity. Methanol extract of plants (100 μg of residue) was tested against the multidrug resistant (MDR) Gram-negative and Gram-positive bacteria. Forty-seven plants showed strong activity againstBurkholderia pseudomallei(strain TES and KHW) andStaphylococcus aureus, of whichTragia involucrataL.,Citrus acidaRoxb. Hook.f., andAegle marmelos(L.) Correa ex Roxb. showed powerful inhibition of bacteria. Eighteen plants displayed only a moderate effect, while six plants failed to provide any evidence of inhibition against the tested bacteria. Purified compounds showed higher antimicrobial activity than crude extracts. The compounds showed less toxic effect to the human skin fibroblasts (HEPK) cells than their corresponding aromatic fractions. Phytochemical screening indicates that the presence of various secondary metabolites may be responsible for this activity. Most of the plant extracts contained high levels of phenolic or polyphenolic compounds and exhibited activity against MDR pathogens. In conclusion, plants are promising agents that deserve further exploration. Lead molecules available from such extracts may serve as potential antimicrobial agents for future drug development to combat diseases caused by the MDR bacterial strains as reported in this study.


2019 ◽  
Vol 16 ◽  
Author(s):  
Xufen Dai ◽  
Jiaxue Hao ◽  
Ying Feng ◽  
Jing Wang ◽  
Qiannan Li ◽  
...  

Background: Curcumin (CUR), a natural isolated compound from turmeric, has been the promising star in fighting many diseases but the broad application of curcumin has been limited ascribed to low bioavailability. Objective: The aim of this study is to pursue the enhancement of curcumin bioavailability through co-administration of vitamin C. Methods: Such purpose was achieved through the analysis of curcumin pharmacokinetics by high performance liquid chromatography coupled with electrospray ionization - tandem mass spectrometry (HPLC - ESI - MS/MS). The plasma was separated on a C18 reverse phase column using acetonitrile and ammonium formate solution (pH 6.5; 2.0 mM) at 0.8 mL/min. MS/MS detection was carried out in negative mode using mass patterns of m/z 367.0 > 216.7 for curcumin and m/z 265.2 > 223.9 for internal standard (honokiol). Results: Successful application of the proposed method in the pharmacokinetic study presented clear changes in key pharmacokinetic parameters including the growth of AUC (0-t) up to 2.4 times, 2.2-fold increase of Cmax, 2.2-fold loss of CL, and 1.5-fold diminishment of t1/2. Conclusion: We developed an HPLC-ESI-MS/MS method for determination of curcumin in rat plasma and validated the improvement of bioavailability of curcumin through co-administration of vitamin C. We reasoned these changes to the inhibition of lipid peroxidation induced by the use of vitamin C. Such a simple strategy is possible to become an alternative for enhancing curcumin efficiency in practice.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1112
Author(s):  
Yan Yang ◽  
Liangfang Dai ◽  
Decai Wu ◽  
Limin Dong ◽  
Yisheng Tu ◽  
...  

Huperzia serrata is a traditional herb and endangered Chinese medicinal material, which has attracted much attention due to its production of Huperzine A (HupA). In vitro propagation of H. serrata is considered a new way to relieve the resource pressure of H. serrata. In this study, three different genotypic wild H. serrata were used for in vitro propagation. Then, the antioxidant activity and the content of HupA in the regenerated H. serrata were investigated. The results showed the survival rate of the explant was increased to 25.37% when using multiple sterilization processes. The best induction medium for H. serrata was the Schenk and Hildebrandt (SH) medium supplemented with 0.5 mg·L−1 Naphthalene acetic acid (NAA) and 0.1 mg·L−1 2,4-Dichlorophenoxyacetic acid (2,4-D), where the regeneration rate of the explant was to 57.04%. The best proliferation medium was the SH medium with NAA (1.0 mg·L−1), as the biomass of in vitro tissue increased 164.17 ± 0.41 times. High-performance liquid chromatography analysis showed that the in vitro culture of three genotypes could produce HupA and the content of HupA was 53.90–87.17 µg·g−1. The antioxidant experiment showed that the methanol extract of in vitro H. serrata had higher antioxidant activity than that of wild H. serrata. This study provides a reliable in vitro H. serrata culture protocol and laid an important foundation for the antioxidant capacity of the thallus and the content of HupA.


Sign in / Sign up

Export Citation Format

Share Document