Extended measuring depth dual-wavelength Fourier domain optical coherence tomography

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Haroun Al-Mohamedi ◽  
Ismael Kelly-Pérez ◽  
Theo Oltrup ◽  
Alan Cayless ◽  
Thomas Bende

Abstract In this work an enhanced wide range dual band spectral domain optical coherence tomography technique (SD-OCT) is presented to increase the depth and accuracy of the measurement of optical A-scan biometry. The setup uses a Michelson interferometer with two wide-spectrum Superluminescent Diodes (SLD). The emissions of the SLDs are filtered by a long-pass filter (900 nm) in front of the reference mirror. The light is spectrally decomposed using a single reflective diffraction grating (1,800 lines/mm) and the whole spectrum captured with two CCD line sensors. The capabilities of the system have been validated using a self-made human model eye.

2021 ◽  
Vol 10 (2) ◽  
pp. 231
Author(s):  
Giacinto Triolo ◽  
Piero Barboni ◽  
Giacomo Savini ◽  
Francesco De Gaetano ◽  
Gaspare Monaco ◽  
...  

The introduction of anterior-segment optical-coherence tomography (AS-OCT) has led to improved assessments of the anatomy of the iridocorneal-angle and diagnoses of several mechanisms of angle closure which often result in raised intraocular pressure (IOP). Continuous advancements in AS-OCT technology and software, along with an extensive research in the field, have resulted in a wide range of possible parameters that may be used to diagnose and follow up on patients with this spectrum of diseases. However, the clinical relevance of such variables needs to be explored thoroughly. The aim of the present review is to summarize the current evidence supporting the use of AS-OCT for the diagnosis and follow-up of several iridocorneal-angle and anterior-chamber alterations, focusing on the advantages and downsides of this technology.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ying-Yi Chen ◽  
Yi-Chen Sun ◽  
Chia-Ying Tsai ◽  
Hsiao-Sang Chu ◽  
Jo-Hsuan Wu ◽  
...  

AbstractSpectral-domain optical coherence tomography (SD-OCT) has been used to observe the morphology of the palisades of Vogt (POV) with satisfactory resolutions. In this study, we used SD-OCT to examine the microstructure of the POV in ocular surface disorders with limbal involvement. We detect subclinical limbal pathologies based on five parameters, including (1) decreased epithelial thickness, (2) loss of the sharp stromal tip, (3) loss of the smooth epithelial-stromal interface, (4) dilated stromal vessels, and (5) decreased POV density. Eighteen eyes of 10 patients with advancing wavelike epitheliopathy (AWE) and 15 eyes of 9 patients with phlyctenular keratitis/ocular rosacea were recruited. SD-OCT could detect abnormal changes in the POV in 100% of the lesion sites. In presumed-healthy areas of the diseased eyes diagnosed by slit-lamp biomicroscopy, SD-OCT detected abnormal changes in the POV in 100% of the eyes in both groups. In patients with unilateral disease, abnormal changes in the POV were detected by SD-OCT in 50% and 100% of presumed-healthy eyes diagnosed by slit-lamp biomicroscopy in the AWE group and phlyctenular keratitis/ocular rosacea group, respectively. SD-OCT is powerful in detecting POV changes in ocular surface disorders and can provide useful information that cannot be provided by slit-lamp biomicroscopy.


2018 ◽  
Vol 2018 ◽  
pp. 1-22 ◽  
Author(s):  
Farid Atry ◽  
Israel Jacob De La Rosa ◽  
Kevin R. Rarick ◽  
Ramin Pashaie

In the past decades, spectral-domain optical coherence tomography (SD-OCT) has transformed into a widely popular imaging technology which is used in many research and clinical applications. Despite such fast growth in the field, the technology has not been readily accessible to many research laboratories either due to the cost or inflexibility of the commercially available systems or due to the lack of essential knowledge in the field of optics to develop custom-made scanners that suit specific applications. This paper aims to provide a detailed discussion on the design and development process of a typical SD-OCT scanner. The effects of multiple design parameters, for the main optical and optomechanical components, on the overall performance of the imaging system are analyzed and discussions are provided to serve as a guideline for the development of a custom SD-OCT system. While this article can be generalized for different applications, we will demonstrate the design of a SD-OCT system and representative results for in vivo brain imaging. We explain procedures to measure the axial and transversal resolutions and field of view of the system and to understand the discrepancies between the experimental and theoretical values. The specific aim of this piece is to facilitate the process of constructing custom-made SD-OCT scanners for research groups with minimum understanding of concepts in optical design and medical imaging.


Author(s):  
Sandeep Saxena ◽  
Levent Akduman ◽  
Carsten H. Meyer

AbstractAdvances in spectral-domain optical coherence tomography (SD-OCT) technology have enhanced the understanding of external limiting membrane (ELM) and ellipsoid zone (EZ) in diabetic macular edema. An increase in VEGF has been demonstrated to be associated with sequential ELM and EZ disruption on SD-OCT. An intact ELM is a prerequisite for an intact EZ in DME. Anti-VEGF therapy leads to restoration of barrier effect of ELM. The ELM restores first followed by EZ restoration.


Author(s):  
Daniel Krause ◽  
Niklas Mohr ◽  
Mehdi Shajari ◽  
Wolfgang J. Mayer ◽  
Siegfried Priglinger ◽  
...  

Abstract Purpose To evaluate the reliability of spectral-domain optical coherence tomography (SD-OCT; RTVue XR; Optovue, Inc., Fremont, CA, USA) for thickness mapping of the entire cornea (CT), corneal epithelium (ET). and corneal stroma (ST) over a 9-mm zone in healthy eyes. We sought to develop reference values for different age groups and elucidate potential sex- and age-dependent characteristics of corneal sublayer pachymetry maps. Methods Three consecutive SD-OCT scans were obtained in 166 healthy right eyes (mean age = 50 ± 20 years). The thickness maps contain 25 sectors over a 9-mm diameter zone. To test measurement reliability, intraclass correlation coefficients (ICC), coefficients of variation (CoV), and within-subject standard deviations (WSSD) were calculated. Results CT, ET, and ST ICCs ranged from 0.961 to 0.998, 0.896 to 0.945, and 0.955 to 0.998, respectively. CoV values for CT, ET, and ST ranged between 0.3 and 1.5%, 1.6 and 4.2%, and 0.4 and 1.7%, respectively. WSSD ranged from 6 to 41, 4 to 8, and 7 to 46 µm, respectively. A negative correlation was found between age and ET (p < 0.05) but not between age and ST or CT. No gender-related differences in CT, ET, or ST were detected. CoV of CT, ET, and ST measurements showed a positive correlation with age in 28, 64, and 28% of the sectors, respectively. Conclusion SD-OCT is a rapid and noninvasive technique that provides excellent reliability for corneal sublayer thickness measurements over a 9-mm zone. The reliability of the ET measurement seems to be negatively affected by age. Peripheral CT and global ET thin with age.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Naresh Babu Kannan ◽  
Sagnik Sen ◽  
Prithviraj Udaya ◽  
Obuli Ramachandran ◽  
Kim Ramasamy

Purpose. To study the clinicodemographic profile of dome-shaped maculopathy (DSM) eyes in the Indian population and characterization using spectral-domain optical coherence tomography (SD-OCT). Methods. This observational cross-sectional study included 25 eyes of 14 patients diagnosed with DSM. All eyes underwent SD-OCT for characterization of the dome profile and also to measure central macular thickness (CMT), subfoveal choroidal thickness (SFCT), and dome height (DH) and to detect the presence of subretinal fluid (SRF). Results. The mean age of patients was 48.36 ± 14.23 years (range, 28–65 years). Eleven patients had bilateral involvement. Mean axial length of all eyes was 24.25 ± 1.95 mm and mean spherical equivalent −4.23 ± 3.79 DS. Overall, 11/25 eyes (44%) had round domes, 9/25 eyes (36%) had horizontal domes, and 5/25 eyes (20%) had vertical domes, with a mean dome height at fovea of 500.54 ± 291.58 µm. Vertical domes had higher DH compared to horizontal or combined domes p = 0.02 . Six eyes (6/25, 24%) showed the presence of SRF; 60% of vertical domes had SRF, and 22.2% of horizontal domes had SRF. The eyes having SRF had significantly higher CMT p = 0.017 and DH p = 0.001 , especially in horizontal domes p = 0.023 . The eyes with thicker SFCT tended to have higher DH and poorer visual acuity. Conclusion. Indian DSM eyes may have relatively lesser amounts of myopia. Choroidal thickening may play a role in development of DSM and may also be related to development of subretinal fluid in such eyes.


PLoS ONE ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. e0222850 ◽  
Author(s):  
Nora Denk ◽  
Peter Maloca ◽  
Guido Steiner ◽  
Christian Freichel ◽  
Simon Bassett ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Anabel Rodríguez ◽  
Marc Biarnés ◽  
Rosa M. Coco-Martin ◽  
Anna Sala-Puigdollers ◽  
Jordi Monés

Purpose. This study aims to find out which tool, fundus autofluorescence (FAF) or spectral domain optical coherence tomography (SD-OCT), is more sensitive in detecting retinal pigment epithelium (RPE) demise overlying drusen and can, therefore, help predict geographic atrophy (GA) appearance in Age-Related Macular Degeneration (AMD). Methods. A single-site, retrospective, observational, longitudinal study was conducted. Patients with intermediate AMD (iAMD) (large (>125 μm) or intermediate (63–125 μm) drusen with hyper/hypopigmentation) with a minimum follow-up of 18 months were included. Drusen with overlying incipient RPE atrophy were identified on SD-OCT defined as choroidal hypertransmission or nascent geographic atrophy (nGA). These selected drusen were, then, traced backwards in time to determine if incipient RPE atrophy overlying drusen was observed on FAF (well-demarcated region of absence of autofluorescence) before, simultaneously, or after having detected the first signs of incipient RPE atrophy on SD-OCT. The number of drusen in which signs of incipient RPE atrophy was detected earlier using FAF or SD-OCT was compared. The time elapsed from the identification with the more sensitive method to the other was recorded and analyzed. Results. One hundred and thirty-three drusen in 22 eyes of 22 patients were included. Of these, 112 (84.2%) drusen showed choroidal hypertransmission and 21(15.8%) nGA. Early signs of atrophy overlying drusen were found simultaneously on SD-OCT and FAF in 52 cases (39.1%, 95% CI 30.8–47.9%), earliest on FAF in 51 (38.3%, 95% CI 30.0–47.2%) and first on SD-OCT in 30 (22.6%, 95% CI 15.8–30.6%; p<0.05). Statistically significant differences were found between both techniques (p=0.005), with FAF detecting it earlier than SD-OCT. When RPE atrophy was found first on FAF, the median time to diagnosis with SD-OCT was 6.6 months (95% CI 5.5 to 8.6), while if detection occurred earlier on SD-OCT, the median time until identification with FAF was 12.6 months (95% CI 6.0 to 23.4; p=0.0003). Conclusions. In iAMD cases in which early atrophy overlying drusen is not detected simultaneously in FAF and SD-OCT, FAF was significantly more sensitive. Nevertheless, a multimodal approach is recommended and required to evaluate these patients.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Thomas Kurmann ◽  
Siqing Yu ◽  
Pablo Márquez-Neila ◽  
Andreas Ebneter ◽  
Martin Zinkernagel ◽  
...  

Abstract In ophthalmology, retinal biological markers, or biomarkers, play a critical role in the management of chronic eye conditions and in the development of new therapeutics. While many imaging technologies used today can visualize these, Optical Coherence Tomography (OCT) is often the tool of choice due to its ability to image retinal structures in three dimensions at micrometer resolution. But with widespread use in clinical routine, and growing prevalence in chronic retinal conditions, the quantity of scans acquired worldwide is surpassing the capacity of retinal specialists to inspect these in meaningful ways. Instead, automated analysis of scans using machine learning algorithms provide a cost effective and reliable alternative to assist ophthalmologists in clinical routine and research. We present a machine learning method capable of consistently identifying a wide range of common retinal biomarkers from OCT scans. Our approach avoids the need for costly segmentation annotations and allows scans to be characterized by biomarker distributions. These can then be used to classify scans based on their underlying pathology in a device-independent way.


2015 ◽  
Vol 234 (3) ◽  
pp. 160-166 ◽  
Author(s):  
Young-Joon Jo ◽  
Hyung-Bin Lim ◽  
Soo-Hyun Lee ◽  
Jung-Yeul Kim

Purpose: To evaluate the effects of retinal angiography, using fluorescein and indocyanine green dyes, on optical coherence tomography (OCT) measurements. Methods: In total, 76 eyes from 76 consecutive patients were included. Macular cube 512 × 128 combination scanning and optic disc 200 × 200 scanning using spectral-domain (SD)-OCT were performed twice, before and after retinal angiography, with fluorescein or indocyanine green. Signal strength, regional retinal thickness of the 9 Early Treatment Diabetic Retinopathy Study subfields, total macular volume, and retinal nerve fiber layer thickness obtained before and after angiography were compared. Repeatability was also investigated. Results: Comparing the results of OCT measured before and after retinal angiography, there was no statistically significant difference in any parameter assessed. The interclass correlation values for each measurement were all >0.808 (range 0.808-0.999). Conclusion: Retinal angiography using fluorescein and indocyanine green dyes has no significant effect on OCT measurements.


Sign in / Sign up

Export Citation Format

Share Document