Kinetic modeling of biosurfactant production by Bacillus subtilis N3-1P using brewery waste

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bahareh Moshtagh ◽  
Kelly Hawboldt ◽  
Baiyu Zhang

Abstract Costs associated with production of favorable biologically produced surfactants continue to be a significant obstacle to large scale application. Using industrial wastes and by-products as substrate and optimization of cultural conditions are two strategies of producing biosurfactants with a reasonable price. Also, modeling the biosurfactant production bioprocess improves the commercial design and monitoring of biomass growth, biosurfactant production, and substrate utilization. In this study, the indigenous Bacillus subtilis N3-1P strain and a local brewery waste as the carbon source were used to produce a biosurfactant. The batch cultivation was performed under the optimum conditions. Models describing the biomass growth, biosurfactant production, and substrate utilization were developed by fitting the experimental data to the logistic, Contois and Luedeking-Piret models using MATLAB software and regression analysis. The kinetic parameters including the maximum specific growth rates (µ max), the Contois constant (K), parameters of the Luedeking-Piret modelswere calculated. Yields including Y X/S , and Y P/X were found to be 0.143 gX/gS, and 0.188 gP/gX, respectively. The experimental and predicted model showed good agreement. The developed models are a key step in designing reactors for scale up of biosurfactant production.

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 456
Author(s):  
Jiheng Hu ◽  
Jie Luo ◽  
Zhiwen Zhu ◽  
Bing Chen ◽  
Xudong Ye ◽  
...  

As one of the most effective biosurfactants reported to date, lipopeptides exhibit attractive surface and biological activities and have the great potential to serve as biocatalysts. Low yield, high cost of production, and purification hinder the large-scale applications of lipopeptides. Utilization of waste materials as low-cost substrates for the growth of biosurfactant producers has emerged as a feasible solution for economical biosurfactant production. In this study, fish peptone was generated through enzyme hydrolyzation of smashed tuna (Katsuwonus pelamis). Biosurfactant (mainly surfactin) production by Bacillus subtilis ATCC 21332 was further evaluated and optimized using the generated fish peptone as a comprehensive substrate. The optimized production conduction was continuously assessed in a 7 L batch-scale and 100 L pilot-scale fermenter, exploring the possibility for a large-scale surfactin production. The results showed that Bacillus subtilis ATCC 21332 could effectively use the fish waste peptones for surfactin production. The highest surfactin productivity achieved in the pilot-scale experiments was 274 mg/L. The experimental results shed light on the further production of surfactins at scales using fish wastes as an economical substrate.


2011 ◽  
Vol 343-344 ◽  
pp. 753-763 ◽  
Author(s):  
Hua You Chen ◽  
Xiang Hui Qi ◽  
Xu Geng ◽  
Qing Gang Xu ◽  
Jing Wang ◽  
...  

Hirudin is the most potent natural inhibitor of thrombin and a powerful anticoagulant. Large-scale production of recombinant hirudin is desirable for therapy. In this study, the gene encoding hirudin variant III was redesigned and synthesized by usingBacillus subtilispreferred codons, and the recombinant hirudin variant III (rHV3) was overexpressed inB. subtilisDB403 with strong anticoagulation activity for the first time. The hirudin activity from the supernatant of culture with optimized expression conditions could reach 210 ATU/ml. The protein in culture supernatant was precipitated by trichloroacetic acid, then desalted by ultrafiltration and purified by anion exchange chromatography. Strong anion Q F.F. performed better than weak anion DEAE F.F. The proper pH and conductivity was determined at pH 8 and 6 ms/cm, respectively. The maximum applied sample was 240 ATU/ml to medium of strong anion Q F.F. This optimized procedure was employed in strong anion exchange HiPrep 16/10Q with the 90% recovery rate and 70.2% purity. After gel filtration, the purity of rHV3 checked by HPLC could reach 95.1%, and the recovery rate was 93% for this step. The purified recombinant rHV3 showed a single band in SDS-PAGE. The rHV3 was stable at 100 °C and acidity condition, but was unstable under the condition of both heating and alkalinity. In conclusion, theses studies suggests thatB.subtilismight be useful for the production of biologically active medicine peptides in secretion facilitating purification procedures, and that this isolation method was suitable for scale-up purification process at a low cost.


Author(s):  
Samson A. Adejumo ◽  
Angus Nnamdi Oli ◽  
Ebere Innocent Okoye ◽  
Calistus Dozie Nwakile ◽  
Chioma Miracle Ojiako ◽  
...  

Author(s):  
S. Pragati ◽  
S. Kuldeep ◽  
S. Ashok ◽  
M. Satheesh

One of the situations in the treatment of disease is the delivery of efficacious medication of appropriate concentration to the site of action in a controlled and continual manner. Nanoparticle represents an important particulate carrier system, developed accordingly. Nanoparticles are solid colloidal particles ranging in size from 1 to 1000 nm and composed of macromolecular material. Nanoparticles could be polymeric or lipidic (SLNs). Industry estimates suggest that approximately 40% of lipophilic drug candidates fail due to solubility and formulation stability issues, prompting significant research activity in advanced lipophile delivery technologies. Solid lipid nanoparticle technology represents a promising new approach to lipophile drug delivery. Solid lipid nanoparticles (SLNs) are important advancement in this area. The bioacceptable and biodegradable nature of SLNs makes them less toxic as compared to polymeric nanoparticles. Supplemented with small size which prolongs the circulation time in blood, feasible scale up for large scale production and absence of burst effect makes them interesting candidates for study. In this present review this new approach is discussed in terms of their preparation, advantages, characterization and special features.


2020 ◽  
Vol 27 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Niaz Ahmad ◽  
Muhammad Aamer Mehmood ◽  
Sana Malik

: In recent years, microalgae have emerged as an alternative platform for large-scale production of recombinant proteins for different commercial applications. As a production platform, it has several advantages, including rapid growth, easily scale up and ability to grow with or without the external carbon source. Genetic transformation of several species has been established. Of these, Chlamydomonas reinhardtii has become significantly attractive for its potential to express foreign proteins inexpensively. All its three genomes – nuclear, mitochondrial and chloroplastic – have been sequenced. As a result, a wealth of information about its genetic machinery, protein expression mechanism (transcription, translation and post-translational modifications) is available. Over the years, various molecular tools have been developed for the manipulation of all these genomes. Various studies show that the transformation of the chloroplast genome has several advantages over nuclear transformation from the biopharming point of view. According to a recent survey, over 100 recombinant proteins have been expressed in algal chloroplasts. However, the expression levels achieved in the algal chloroplast genome are generally lower compared to the chloroplasts of higher plants. Work is therefore needed to make the algal chloroplast transformation commercially competitive. In this review, we discuss some examples from the algal research, which could play their role in making algal chloroplast commercially successful.


2021 ◽  
Vol 102 (8) ◽  
pp. 8-13
Author(s):  
Thomas Hatch

Taking advantage of the possibilities for learning outside of school requires us to build on what we know about why it is so hard to sustain and scale up unconventional educational experiences within conventional schools. To illustrate the opportunities and challenges, Thomas Hatch describes a large-scale approach to project-based learning developed in a camp in New Hampshire and incorporated in a Brooklyn school, a trip-based program in Detroit, and Singapore’s systemic embrace of learning outside school. By understanding the conditions that can sustain alternative instructional practices, educators can find places to challenge the boundaries of schooling and create visions of the possible that exceed current constraints.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 62
Author(s):  
Konstantins Dubencovs ◽  
Janis Liepins ◽  
Arturs Suleiko ◽  
Anastasija Suleiko ◽  
Reinis Vangravs ◽  
...  

The Kluyveromyces marxianus yeast recently has gained considerable attention due to its applicability in high-value-added product manufacturing. In order to intensify the biosynthesis rate of a target product, reaching high biomass concentrations in the reaction medium is mandatory. Fed-batch processes are an attractive and efficient way how to achieve high cell densities. However, depending on the physiology of the particular microbial strain, an optimal media composition should be used to avoid by-product synthesis and, subsequently, a decrease in overall process effi-ciency. Thus, the aim of the present study was to optimise the synthetic growth medium and feeding solution compositions (in terms of carbon, nitrogen, phosphorous, magnesium, and calcium concentrations) for high cell density K. marxianus fed‑batch cultivations. Additionally, the biomass yields from the vitamin mixture and other macro/microelements were identified. A model predictive control algorithm was successfully applied for a fed-batch cultivation control. Biomass growth and substrate consumption kinetics were compared with the mathematical model predictions. Finally, 2‑phenylethanol biosynthesis was induced and its productivity was estimated. The determined optimal macronutrient ratio for K. marxianus biomass growth was identified as C:N:P = 1:0.07:0.011. The maximal attained yeast biomass concentration was close to 70 g·L-1 and the 2-PE biosynthesis rate was 0.372 g·L−1·h−1, with a yield of 74% from 2-phenylalanine.


2021 ◽  
pp. 037957212098250
Author(s):  
Jennifer K. Foley ◽  
Kristina D. Michaux ◽  
Bho Mudyahoto ◽  
Laira Kyazike ◽  
Binu Cherian ◽  
...  

Background: Micronutrient deficiencies affect over one quarter of the world’s population. Biofortification is an evidence-based nutrition strategy that addresses some of the most common and preventable global micronutrient gaps and can help improve the health of millions of people. Since 2013, HarvestPlus and a consortium of collaborators have made impressive progress in the enrichment of staple crops with essential micronutrients through conventional plant breeding. Objective: To review and highlight lessons learned from multiple large-scale delivery strategies used by HarvestPlus to scale up biofortification across different country and crop contexts. Results: India has strong public and private sector pearl millet breeding programs and a robust commercial seed sector. To scale-up pearl millet, HarvestPlus established partnerships with public and private seed companies, which facilitated the rapid commercialization of products and engagement of farmers in delivery activities. In Nigeria, HarvestPlus stimulated the initial acceptance and popularization of vitamin A cassava using a host of creative approaches, including “crowding in” delivery partners, innovative promotional programs, and development of intermediate raw material for industry and novel food products. In Uganda, orange sweet potato (OSP) is a traditional subsistence crop. Due to this, and the lack of formal seed systems and markets, HarvestPlus established a network of partnerships with community-based nongovernmental organizations and vine multipliers to popularize and scale-up delivery of OSP. Conclusions: Impact of biofortification ultimately depends on the development of sustainable markets for biofortified seeds and products. Results illustrate the need for context-specific, innovative solutions to promote widespread adoption.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alisa Alekseenko ◽  
Donal Barrett ◽  
Yerma Pareja-Sanchez ◽  
Rebecca J. Howard ◽  
Emilia Strandback ◽  
...  

AbstractRT-LAMP detection of SARS-CoV-2 has been shown to be a valuable approach to scale up COVID-19 diagnostics and thus contribute to limiting the spread of the disease. Here we present the optimization of highly cost-effective in-house produced enzymes, and we benchmark their performance against commercial alternatives. We explore the compatibility between multiple DNA polymerases with high strand-displacement activity and thermostable reverse transcriptases required for RT-LAMP. We optimize reaction conditions and demonstrate their applicability using both synthetic RNA and clinical patient samples. Finally, we validate the optimized RT-LAMP assay for the detection of SARS-CoV-2 in unextracted heat-inactivated nasopharyngeal samples from 184 patients. We anticipate that optimized and affordable reagents for RT-LAMP will facilitate the expansion of SARS-CoV-2 testing globally, especially in sites and settings where the need for large scale testing cannot be met by commercial alternatives.


Author(s):  
M. Leuchtenmueller ◽  
C. Legerer ◽  
U. Brandner ◽  
J. Antrekowitsch

AbstractEffective recycling of zinc-containing industrial wastes, most importantly electric arc furnace dust, is of tremendous importance for the circular economy of the steel and zinc industry. Herein, we propose a comprehensive kinetic model of the combined carbothermic and metallothermic reduction of zinc oxide in a metal bath process. Pyro-metallurgical, large-scale lab experiments of a carbon-saturated iron melt as reduction agent for a molten zinc oxide slag were performed to determine reaction constants and accurately predict mass transfer coefficients of the proposed kinetic model. An experimentally determined kinetic model demonstrates that various reactions run simultaneously during the reduction of zinc oxide and iron oxide. For the investigated slag composition, the temperature-dependent contribution of the metallothermic zinc oxide reduction was between 25 and 50 pct of the overall reaction mechanism. The mass transfer coefficient of the zinc oxide reduction quadrupled from 1400 °C to 1500 °C. The zinc recovery rate was > 99.9 pct in all experiments.


Sign in / Sign up

Export Citation Format

Share Document