Catalytic crosslinking of a regenerated hydrophobic benzylated cellulose and nano TiO2 composite for enhanced oil absorbency

e-Polymers ◽  
2017 ◽  
Vol 17 (4) ◽  
pp. 295-302
Author(s):  
Oluwaseyi D. Saliu ◽  
Gabriel A. Olatunji ◽  
Azeh Yakubu ◽  
Mariam T. Arowona ◽  
Aminat A. Mohammed

AbstractHydrophobic cellulosic composites with the nano form of metal oxides possess good absorptive and adsorptive potentials. Native cellulose was regenerated, benzylated, crosslinked and blended with TiO2 nanoparticles to absorb toluene, xylene, chloroform, kerosene and petrol. The composite was fully characterized by scanning electron microscopy (SEM), transmission emission microscopy (TEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). The effect of crosslinker, catalyst and time of absorption was investigated. The FTIR shows stretch and bend vibrations of hydroxyl (-OH), alkyl (-CH), aromatic double bond (C=C) for benzyl cellulose while the appearance of new peaks at 816, 769 and 726 cm−1 for Ti-O stretching vibrations confirms the successful synthesis of the composite. The SEM images revealed the transformation of foam-like appearance of benzyl cellulose to a solidified mass after TiO2 compositing. Enhanced oil absorption was seen as the amount of the aluminum sulfate catalyst was doubled as a high Qmax of 24.16, 25.81, 27.22, 24.03 and 24.43 was obtained when the amount of catalyst used was doubled.

2020 ◽  
Vol 2 (1) ◽  
pp. 118-124
Author(s):  
Parastoo Khalili ◽  
◽  
Majid Farahmandjou ◽  

In this paper, α-Fe2O4@ZnO nanoparticles (NPs) were synthesized by coprecipitation method in the presence of PVP and EG surfactants. The samples were charactrized by x-ray fluorescence (XRF), x-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and fourier transform infrared spectroscopy (FTIR). The XRD results exhibited rhombohedral α-Fe2O3 and wurtzite structure of ZnO. The SEM images showed that the NPs changed from rod-shape to nanoleaves particles after heat treatment. The TEM studies displayed the formation of Fe2O3@ZnO core-shell of as-synthesized NPs. The stretching vibrations peaks in FTIR in the wavenumber of 532 cm-1 and 473 cm-1 ascribed to the Fe and Zn groups. The XRF data indicated decreasing of the Fe weight percent from 22 %Wt. to 25 %Wt., after heat treatment.


Arena Tekstil ◽  
2013 ◽  
Vol 28 (1) ◽  
Author(s):  
Maya Komalasari ◽  
Bambang Sunendar

Partikel nano TiO2 berbasis air dengan pH basa telah berhasil disintesis dengan menggunakan metode sol-gel dan diimobilisasi pada kain kapas dengan menggunakan kitosan sebagai zat pengikat silang. Sintesis dilakukan  dengan prekursor TiCl4 pada konsentrasi 0,3 M, 0,5 M dan 1 M, dan menggunakan templat kanji dengan proses kalsinasi pada suhu 500˚C selama 2 jam. Partikel nano TiO2 diaplikasikan ke kain kapas dengan metoda pad-dry-cure dan menggunakan kitosan sebagai crosslinking agent. Berdasarkan hasil Scanning Electron Microscope (SEM),diketahui bahwa morfologi partikel TiO2 berbentuk spherical dengan ukuran nano (kurang dari 100 nm). Karakterisasi X-Ray Diffraction (XRD) menunjukkan adanya tiga tipe struktur kristal utama, yaitu (100), (101) dan (102) dengan fasa kristal yang terbentuk adalah anatase dan rutile. Pada karakterisasi menggunakan SEM terhadap serbuk dari TiO2 yang telah diaplikasikan ke permukaan kain kapas, terlihat adanya imobilisasi partikel nano TiO2 melalui ikatan hidrogen silang dengan kitosan pada kain kapas. Hasil analisa tersebut kemudian dikonfirmasi dengan FTIR (Fourier Transform Infra Red) yang hasilnya memperlihatkan puncak serapan pada bilangan gelombang 3495 cm-1, 2546 cm-1, dan 511 cm-1,  yang masing-masing diasumsikan sebagai adanya vibrasi gugus fungsi O-H, N-H dan Ti-O-Ti. Hasil SEM menunjukkan pula bahwa kristal nano yang terbentuk diantaranya adalah fasa rutile , yang berdasarkan literatur terbukti dapatberfungsi sebagai anti UV.


2006 ◽  
Vol 70 (3) ◽  
pp. 299-307 ◽  
Author(s):  
R.L. Frost ◽  
M.L. Weier ◽  
G.A. Ayoko ◽  
W. Martens ◽  
J. Čejka

AbstractA uranopilite from The South Alligator River, Northern Territory, Australia, has been studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) with EDAX attachment, and thermogravimetry in conjunction with evolved gas mass spectrometry. The XRD shows that the mineral is a pure uranopilite with few if any impurities. The SEM images show that the uranopilite consists of elongated crystals, up to 50μm long and 5 μm wide. Thermogravimetry combined with mass spectrometry shows that dehydration occurs at ∼31°C resulting in the formation of metauranopilite. The first dehydration step over 20–71°C corresponds to a decrease of 5.4 wt.%, equivalent to 6.076 H2O. The second dehydration step, over the temperature range 71 –162.4°C corresponds to a decrease of 4.7 wt.%, equivalent to 5.288 H2O, making a total of 11.364 moles of H2O, close to 12 H2O for uranopilite.Dehydroxylation takes place over the temperature range 80–160°C. The loss of sulphate occurs at higher temperatures in two steps at 622 and 636°C. A mass loss also occurs at 755°C, accounted for by evolved oxygen.


2010 ◽  
Vol 25 (4) ◽  
pp. 658-664 ◽  
Author(s):  
Chang-An Wang ◽  
Keyu Chen ◽  
Yong Huang ◽  
Huirong Le

Layer-structured polypyrrole/montmorillonite (PPy/MMT) naoncomposite films were synthesized by the electrodeposition method. The fabricated free-standing films consist of about 0∼2 wt% Na+-montmorillonite (NMMT). The thickness of films could be controlled by deposition time. X-ray diffraction (XRD) and scanning electron microscope (SEM) were used to observe the microstructure of the films. After MMT was introduced into the PPy matrix, the interspace between PPy chains decreased, according to the XRD results. The layered structure of the films was observed from the SEM images. Tensile and nanoindentation test results showed that the mechanical properties of the composite films were improved at low clay loading. The electrical conductivity of the films with 1.2 wt% MMT loading was increased from 3.6 to 51 S/cm, probably because of the restricted growth of PPy chains in the interspace of MMT layers.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamdi Muhyuddin Barra ◽  
Soo Kien Chen ◽  
Nizam Tamchek ◽  
Zainal Abidin Talib ◽  
Oon Jew Lee ◽  
...  

Abstract Synthesis of thermochromic VO2 (M) was successfully done by annealing hydrothermally-prepared VO2 (B) at different temperatures and times. Conversion of the metastable VO2 (B) to the thermochromic VO2 polymorph was studied using thermogravimetric analyzer (TGA) under N2 atmosphere. Moreover, the phase and morphology of the synthesized samples were studied using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Accordingly, the XRD scans of all the annealed samples exhibited the presence of monoclinic VO2 (M), while the FE-SEM images of the samples showed the formation of nanorods and nanospheres, particularly those heated at high temperatures (650 °C and 700 °C). Meanwhile, differential scanning calorimetry (DSC) was used to measure the phase transition temperature (τc), hysteresis, and enthalpy of the prepared VO2. Based on these results, all samples displayed a τc of about 66 °C. However, the hysteresis was high for the samples annealed at lower temperatures (550 °C and 600 °C), while the enthalpy was very low for samples heated at lower annealing time (1.5 h and 1 h). These findings showed that crystallinity and nanostructure formation affected the thermochromic properties of the samples. In particular, the sample annealed at 650 °C showed better crystallinity and improved thermochromic behavior.


2019 ◽  
Vol 25 (4) ◽  
pp. 1037-1051
Author(s):  
Patrick Ravines ◽  
Alexander Y. Nazarenko

AbstractX-ray diffraction (XRD) and high-resolution scanning electron microscopy (SEM) have been used to characterize the silver mercury amalgam particles resting on the surface that comprise the image of five daguerreotype plates that were not gilded and that were prepared by three different contemporary daguerreotype makers. The regions of interest of the surface that were examined were overexposed, solarized, and highlight (white) areas. The XRD portion of the study shows that the two main silver mercury amalgam particles identified using the International Center for Diffraction Data PF4 + database were the Schachnerite/ζ (zeta) phase amalgam, Ag1.1Hg0.9, and the mercury silver amalgam, Ag0.65Hg0.35. On one of the daguerreotypes a third silver mercury amalgam, Moschellandsbergite, Ag2Hg3, was also identified in small concentrations. High-resolution SEM images corroborate the diffraction data and show that the crystalline nature of the silver mercury amalgam particles on all five plates to be mostly hexagonal, which would correspond to the Schachnerite/ζ (zeta) phase amalgam, and fewer rectangular solid and cubic crystals corresponding to the mercury silver amalgam.


2021 ◽  
Vol 406 ◽  
pp. 219-228
Author(s):  
Ouahiba Herzallah ◽  
Hachemi Ben Temam ◽  
Asma Ababsa ◽  
Abderrahmane Gana

Ni–Co alloy coatings were electrodeposited at various cobalt amounts on pretreated steel substrates. The co-deposition phenomenon of Ni-Co alloys was described as anomalous behaviour. Different techniques including scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX), X-ray diffraction (XRD) and potentiodynamic polarization were used to characterize the alloy coatings. EDX results showed that the Co content increase with the enhancing of Co amount. SEM images have shown that the increase of Co amount leads grain developing from large grain to branched grain form and that goes through spherical and pyramidal, this implies that the grain size of these alloy coatings is greatly affected by Co amount in the electrolyte baths. XRD patterns revealed that the phase structure of Ni–Co coatings is dramatically changed from fcc into hcp structure with the increase of Co amount. The electrochemical properties of Ni-Co alloy coatings evaluated in 3.5% NaCl solution reveal that Ni–34.32 wt.% Co alloy exhibits better corrosion resistance compared to pure Ni and other Ni–Co alloy coatings.


2008 ◽  
Vol 368-372 ◽  
pp. 5-7
Author(s):  
J.A. Garcia ◽  
M.U. Herrera

Synthesis of Zn-doped PbTiO3 was done using solid-state method. The effects of varying amount of Zn were investigated. Stoichiometric amount of precursors were mixed and ground. The pressed mixtures were calcined at 800°C and sintered at 1,100 °C after regrinding. The samples were characterized using X-ray Diffraction (XRD), Differential Thermal Analysis (DTA), and Scanning Electron Microscopy (SEM). The XRD verifies the existence of PTO in the samples. DTA shows the thermal profile of the samples. Among the different concentrations of Zn that were added, the sample with 5% mole fraction showed the lowest melting point. For 5% mole fraction and greater, SEM images showed flattening and fusing of grains.


2016 ◽  
Vol 675-676 ◽  
pp. 85-88
Author(s):  
Nalita Sawangjit ◽  
Wicharn Techitdheera ◽  
Wisanu Pecharapa

SnO2/CNT nanocomposites were synthesized via microwave-assisted process using SnCl4·5H2O as a starting precursor and UV-treated multi-wall carbon nanotubes (MWCNTs) as scaffolds. The concentration of SnCl4 was varied in the range of 0.01-0.05 M. Effect of precursor concentration on their physical properties and micro structural morphology were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). XRD results indicate that the as-synthesized composites are the mixture of two separated phases including SnO2 and MWCNT. SEM images indicate that the surfaces of MWCNT are thoroughly covered with SnO2 nanoparticles. Comparative gas sensing result reveals that the prepared hybrid SnO2/MWCNT composites exhibit much higher sensing sensitivity and recovery property in detecting alcohol gas at room temperature than the bare SnO2.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kaiqi Lu ◽  
Qiyun He ◽  
Li Chen ◽  
Baoquan Ai ◽  
Jianwen Xiong

Four samples of modified titanium dioxide (TiO2), Fe/TiO2(2 wt%), Fe/TiO2(5 wt%), and 5-ALA/TiO2, were experimented in photodynamic therapy (PDT) on leukemia cells HL60, performing promising photocatalytic inactivation effect. Fe/TiO2and 5-ALA/TiO2were synthesized in methods of precipitation and ultrasonic methods, respectively. X-ray diffraction spectra and UV-Vis spectra were studied for the samples’ crystalline phase and redshift of absorption peak. Further, FTIR spectra and Raman spectra were obtained to examine the combination of 5-aminolevulinic (5-ALA) and TiO2nanoparticles. The toxicity of these four kinds of nanoparticles was studied through darkroom experiments. And based on the concentration which caused the same toxic effect (90%) on HL60, PDT experiments of TiO2, Fe/TiO2(2%), Fe/TiO2(5%), and ALA/TiO2were done, resulting in the fact that the photokilling efficiency was 69.7%, 71.6%, 72%, and 80.6%, respectively. Scanning electron microscope (SEM) images of the samples were also taken to study the morphology of HL60 cells before and after PDT, resulting in the fact the activation of the modified TiO2from PDT was the main cause of cell apoptosis.


Sign in / Sign up

Export Citation Format

Share Document