scholarly journals Chemistry and Applications of Phosphorylated Chitin and Chitosan

e-Polymers ◽  
2006 ◽  
Vol 6 (1) ◽  
Author(s):  
R. Jayakumar ◽  
R. L. Reis ◽  
J. F. Mano

AbstractChitin and chitosan are natural based non-toxic, biodegradable and biocompatible polymers and have been used in biomedical areas in the form of sutures, wound healing materials and artificial skin, and for the sustained release of drugs as well as in various industrial applications. However, practical use of these polymers has been mainly confined to the unmodified forms. Recently, there has been a growing interest in chemical modification of chitin and chitosan to improve their solubility and widen their applications. Among them, phosphorylated chitin and chitosan have attracted considerable interest because of their various advantages: anti-inflammatory property, ability to form metal complexes, blood compatibility and formation of anionic polyelectrolyte hydrogels. The purpose of this review is to take a closer look of different synthetic methods of phosphorylated chitin and chitosan and their potential applications in environmental, food, fuel cell, and biomedical fields. Based on current research and existing products, some new and futuristic approaches in this context area are discussed.

2020 ◽  
Vol 11 (SPL4) ◽  
pp. 1621-1626
Author(s):  
Gopi Chander N

Chitosan is significant and more promising biomaterial. It is a commonly available polysaccharide and easy to synthesis: the structure and the reactive groups of chitosan aid in obtaining an extended modification of chitosan for various applications. The physical, chemical, and biological properties of chitosan are significant, among them the antimicrobial, biodegradable, biocompatible and non-toxic are of importance. Earlier it was widely used for industrial applications. The superior biological properties, along with other advantages, has enhanced the applications in biomedical and dentistry. It is widely used for bone regeneration, tissue replacement, drug delivery, wound healing, anti-plaque, anti-cariogenic and modifying of dental materials to obtain better properties. Mostly the studies are in primitive research. More studies are to be done to obtain the best advantages of the material. The understanding of the material and its usage are useful for extended for further developments. This review provides information on chitosan on material, properties, synthesis and applications.


2021 ◽  
Vol 10 (2) ◽  
pp. 69-75
Author(s):  
Mavis Ampah ◽  
Margaret Akyea Brago ◽  
Mercy Adusei Boatemaa ◽  
Paul Arthur ◽  
Maxwell Mamfe Sakyiamah

Wound refers to any damage or disruption to the normal anatomical structure. In our everyday pathology, wounds remains one of the demanding clinical problems with it related complications which increases mortality and morbidity rate yearly. In this study, chitin and chitosan were extracted from shrimp shells waste by chemical method, treated with an acid and an alkali which gave a yield of 12 % and 66.57 % respectively. The chemical extraction method included demineralization where the sample was treated with hydrochloric acid (HCL) under a specific temperature. The sample was then treated with sodium hydroxide (NaOH) to remove all the protein in the material at a specific temperature. To obtain the chitosan, the chitin was treated with 50% NaOH at a temperature of 1000C. E.coli proved to be more susceptible in antimicrobial studies with a value of 11.67± 0.47. The FTIR spectra gave a characteristic bands of –NH at 3430.09 cm-1, OH at 3256.32 cm-1.At 2960.75 cm-1, NH was attached to a single bond. The characteristics of produced chitosan were in accordance with the commercial standard that showed a higher percentile yield posing many properties of commercial value and greater scope of industrial applications. This study revealed that shrimp shell waste could be effectively utilized for the extraction of chitin, chitosan, and chitooligomer for industrial applications. The zone of inhibition study of E.coli shows that chitosan and COS may have a high antimicrobial property hence it usefulness in the wound healing management.


2020 ◽  
Vol 91 ◽  
pp. 106827
Author(s):  
Maryam Najafiasl ◽  
Shahriar Osfouri ◽  
Reza Azin ◽  
Sasan Zaeri

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 906
Author(s):  
Le Minh Tu Phan ◽  
Thuy Anh Thu Vo ◽  
Thi Xoan Hoang ◽  
Sungbo Cho

Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. This comprehensive review summarizes the current development of graphene-integrated hydrogel composites and their application in photothermal biomedicine. The latest advances in the synthesis strategies, unique properties and potential applications of photothermal-responsive GGel nanocomposites in biomedical fields are introduced in detail. This review aims to provide a better understanding of the current progress in GGel material fabrication, photothermal properties and potential PTT-based biomedical applications, thereby aiding in more research efforts to facilitate the further advancement of photothermal biomedicine.


2021 ◽  
Vol 22 (12) ◽  
pp. 6267
Author(s):  
Meng-Jin Lin ◽  
Mei-Chun Lu ◽  
Hwan-You Chang

The goals of this study are to develop a high purity patented silk fibroin (SF) film and test its suitability to be used as a slow-release delivery for insulin-like growth factor-1 (IGF-1). The release rate of the SF film delivering IGF-1 followed zero-order kinetics as determined via the Ritger and Peppas equation. The release rate constant was identified as 0.11, 0.23, and 0.09% h−1 at 37 °C for SF films loaded with 0.65, 6.5, and 65 pmol IGF-1, respectively. More importantly, the IGF-1 activity was preserved for more than 30 days when complexed with the SF film. We show that the IGF-1-loaded SF films significantly accelerated wound healing in vitro (BALB/3T3) and in vivo (diabetic mice), compared with wounds treated with free IGF-1 and an IGF-1-loaded hydrocolloid dressing. This was evidenced by a six-fold increase in the granulation tissue area in the IGF-1-loaded SF film treatment group compared to that of the PBS control group. Western blotting analysis also demonstrated that IGF-1 receptor (IGF1R) phosphorylation in diabetic wounds increased more significantly in the IGF-1-loaded SF films group than in other experimental groups. Our results suggest that IGF-1 sustained release from SF films promotes wound healing through continuously activating the IGF1R pathway, leading to the enhancement of both wound re-epithelialization and granulation tissue formation in diabetic mice. Collectively, these data indicate that SF films have considerable potential to be used as a wound dressing material for long-term IGF-1 delivery for diabetic wound therapy.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hamed Nosrati ◽  
Reza Aramideh Khouy ◽  
Ali Nosrati ◽  
Mohammad Khodaei ◽  
Mehdi Banitalebi-Dehkordi ◽  
...  

AbstractSkin is the body’s first barrier against external pathogens that maintains the homeostasis of the body. Any serious damage to the skin could have an impact on human health and quality of life. Tissue engineering aims to improve the quality of damaged tissue regeneration. One of the most effective treatments for skin tissue regeneration is to improve angiogenesis during the healing period. Over the last decade, there has been an impressive growth of new potential applications for nanobiomaterials in tissue engineering. Various approaches have been developed to improve the rate and quality of the healing process using angiogenic nanomaterials. In this review, we focused on molecular mechanisms and key factors in angiogenesis, the role of nanobiomaterials in angiogenesis, and scaffold-based tissue engineering approaches for accelerated wound healing based on improved angiogenesis.


2021 ◽  
Author(s):  
Xingyu Chen ◽  
Zuxin Wang ◽  
Shan Gao ◽  
Wanlin Zhang ◽  
Hanwen Gong ◽  
...  

The Tibetan eighteen flavor dangshen pills (TEP) are composed of 18 traditional Tibetan medicines, which are commonly used in the treatment of skin diseases in the Tibetan medicine system. They...


2014 ◽  
Vol 71 (9) ◽  
pp. 2530-2538 ◽  
Author(s):  
Emmanuel de Braux ◽  
Fletcher Warren-Myers ◽  
Tim Dempster ◽  
Per Gunnar Fjelldal ◽  
Tom Hansen ◽  
...  

Abstract Otolith marking with enriched stable isotopes via immersion is a recent method of batch marking larval fish for a range of research and industrial applications. However, current immersion times and isotope concentrations required to successfully mark an otolith limit the utility of this technique. Osmotic induction improves incorporation and reduces immersion time for some chemical markers, but its effects on isotope incorporation into otoliths are unknown. Here, we tested the effects of osmotic induction over a range of different isotope concentrations and immersion times on relative mark success and strength for 26Mg:24Mg, 86Sr:88Sr and 137Ba:138Ba on Atlantic salmon (Salmo salar) larvae. 71% and 100% mark success were achieved after 1 h of immersion for 86Sr (75 µg L−1) and 137Ba (30 µg L−1) isotopes, respectively. Compared with conventional immersion, osmotic induction improved overall mark strength for 86Sr and 137Ba isotopes by 26–116%, although this effect was only observed after 12 h of immersion and predominately for 86Sr. The results demonstrate that osmotic induction reduces immersion times and the concentrations of isotope required to achieve successful marks. Osmotically induced isotope labels via larval immersion may prove a rapid and cost-effective way of batch marking fish larvae across a range of potential applications.


2013 ◽  
Vol 291-294 ◽  
pp. 614-617 ◽  
Author(s):  
Nur Fatin Ab. Rahman ◽  
Loh Kee Shyuan ◽  
Abu Bakar Mohamad ◽  
Abdul Amir Hassan Kadhum

Tremendous efforts are being made to produce polymer electrolyte membrane (PEM) for fuel cell using advanced materials in order to replace Nafion due to the high costs and its complicated synthesis procedures. One of the efforts include an extensive research on natural polymer to produce biopolymer based electrolyte membranes with desirable properties such as high proton conductivity, as well as good chemical and thermal stabilities. The examples of biopolymer that have been used are polysaccharide (e.g. cellulose, starch and glycogen), chitin and chitosan. This paper presents an overview of the types of biopolymer used to produce a PEM, comprised also their chemical and physical properties, and its performances in fuel cell applications.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Jamie S. Ritch

Abstract Chalcogenated derivatives of N-heterocyclic carbene ligands have received increasing attention due to their diverse chemical reactivity and potential applications in fields such as medicine and materials chemistry. This chapter summarizes the synthetic methods for the preparation of cyclic heavy chalcogenoureas featuring heterocyclic cores and explores their diverse coordination chemistry with p- and d-block metals.


Sign in / Sign up

Export Citation Format

Share Document