scholarly journals Land subsidence inversion method application for salt mining-induced rock mass movement

2017 ◽  
Vol 33 (3) ◽  
pp. 179-200 ◽  
Author(s):  
Ryszard Hejmanowski ◽  
Agnieszka A. Malinowska

AbstractThe modeling of strains and deformations in salt mine areas encounters considerable difficulties because of the varying strength properties of salt, the complex morphological build of dome deposits and the rheological properties of salt. These properties have impacted the development of salt extraction for hundreds of years and the fact that the accurate determining of strains in a given specified moment and place are burdened with high uncertainty. Numerical modeling is useful when the model is reduced to one or several salt chambers. A broader range of underground post mining void considerably lowers the accuracy and efficiency of the calculations of such models. Stochastic models allow for a 3D modeling of the entire mining complex deposit, provided the model has been parametrized in detail. The methods of strains and deformations modeling were presented on the example of one of the biggest salt mines in Europe, where a volume of over 21 million m3 of salt was extracted. The stochastic model could be parametrized thanks to the documented results of measurements of convergence of the underground mining panels and leveling on the surface. The use of land subsidence inversion in the least squares method allowed for estimating the optimum values of parameters of the model. Ground deformation modeling was performed using the two-parameter time function, which allows for a simulation to be carried out in time. In the simulation, the convergence of underground excavations and the transition in time the effects of convergence into ground subsidence was taken into account. The detailed analysis of the geological conditions lead to modeling deviation of the subsidence trough. The accuracy of the modeling results was qualitatively and quantitatively confirmed by a comparison of the modeled to measured values of the vertical ground movement. The scaled model can be applied in future mining extraction projects in order to predict the strains and deformations for an arbitrary moment in time.

2020 ◽  
Author(s):  
Chuanguang Zhu ◽  
Wenhao Wu ◽  
Mahdi Motagh ◽  
Liya Zhang ◽  
Zongli Jiang ◽  
...  

Abstract. The Heze section of Rizhao-Lankao High-speed Railway (RLHR-HZ) has been under construction since 2018 and will be operative by the end of 2021. However, there is a concern that land subsidence in Heze region may affect the normal operation of RLHR-HZ. In this study, we investigate the contemporary ground deformation in the region between 2015 and 2019 by using more than 350 C-band interferograms constructed from two tracks of Sentine-1 data over the region. The Small Baselines Subset (SBAS) technique is adopted to compile the time series displacement. We find that the RLHR-HZ runs through two main subsidence areas: One is located east of Heze region with rates ranging from −4 cm/yr to −1 cm/yr, and another one is located in the coal field with rates ranging from −8 cm/yr to −2 cm/yr. A total length of 35 km of RLSR-HZ are affected by the two subsidence basins. Considering the previous investigation and the monthly precipitation, we infer that the subsidence bowl east of Heze region is due to massive extraction of deep groundwater. Close inspections of the relative locations between the second subsidence area and the underground mining reveals that the subsidence there is probably caused by the groundwater outflow and fault instability due to mining, rather than being directly caused by mining. The InSAR-derived ground subsidence implies that it's necessary to continue monitoring the ground deformation along RLSR-HZ.


2020 ◽  
Vol 20 (12) ◽  
pp. 3399-3411
Author(s):  
Chuanguang Zhu ◽  
Wenhao Wu ◽  
Mahdi Motagh ◽  
Liya Zhang ◽  
Zongli Jiang ◽  
...  

Abstract. The Heze section of Rizhao–Lankao high-speed railway (RLHR-HZ) has been under construction since 2018 and will be in operation by the end of 2021. However, there is a concern that land subsidence in the Heze region may affect the regular operation of RLHR-HZ. In this study, we investigate the contemporary ground deformation in the region between 2015 and 2019 by using more than 350 C-band interferograms constructed from two tracks of Sentinel-1 data over the region. The small baseline subset (SBAS) technique is adopted to compile the time-series displacement. We find that the RLHR-HZ runs through two main subsidence areas: one is located east of the Heze region with rates ranging from −4 to −1 cm yr−1, and another one is located in the coalfield with rates ranging from −8 to −2 cm yr−1. A total length of 35 km of RLHR-HZ is affected by the two subsidence basins. Considering the previous investigation and the monthly precipitation, we infer that the subsidence bowl east of the Heze region is due to massive extraction of deep groundwater. Close inspections of the relative locations between the second subsidence area and the underground mining reveals that the subsidence there is probably caused by the groundwater outflow and fault instability due to mining, rather than being directly caused by mining. The InSAR-derived ground subsidence implies that it is necessary to continue monitoring the ground deformation along RLHR-HZ.


2011 ◽  
Vol 383-390 ◽  
pp. 2201-2205
Author(s):  
Xin Xi Liu ◽  
Xue Zhi Wang

Analysis on the characters of ground subsidence of Yangjiaping mining area, with same excavation depth and recovery coefficient, the numerical simulations to nonlinear large deformation using finite-difference method(FLAC) are achieved on the different strip extraction schemes that adopted different mining and reservation width. The result indicates that the subsidence values and horizontal deformation increases with the increasing of the strip extraction width on condition of the same recovery rate. Based on probability density function (PDF) method, the relationship of the coal pillar width, the mining width and ground deformation is acquired, which is some useful reference for using the strip extraction method to control the surface movement and deformation.


2012 ◽  
Vol 524-527 ◽  
pp. 503-507
Author(s):  
Zhao Hui Liu ◽  
Li Cui ◽  
Tao Zhang ◽  
Qiang Liu ◽  
Er Yang Chen ◽  
...  

The ground subsidence and deformations caused by underground mining not only affect people’s life tremendously, but also ruin the local eco-environment. These phenomenons (disasters) should be controlled and rehabilitated. For this purpose, in this paper, the characteristic and values of surface subsidence, deformation and movements were evaluated and calculated using some kinds of technological theories and methodology such as probability integral method and so on. Based on the Google Earth image and digital relief maps as well as the predicted results and data, several types of 3D thematic maps of mining subsidence and deformation were designed and mapped in order to carry on the land reclamation or rehabilitation in the mining subsidence and deformation areas. The research results can be fitted well with the reality of surface subsidence and deformations.


2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Yonghong Zhang ◽  
Hongan Wu ◽  
Mingju Li ◽  
Yonghui Kang ◽  
Zhong Lu

Interferometric synthetic aperture radar (InSAR) mapping of localized ground surface deformation has become an important tool to manage subsidence-related geohazards. However, monitoring land surface deformation using InSAR at high spatial resolution over a large region is still a formidable task. In this paper, we report a research on investigating ground subsidence and the causes over the entire 107, 200 km2 province of Jiangsu, China, using time-series InSAR. The Sentinel-1 Interferometric Wide-swath (IW) images of 6 frames are used to map ground subsidence over the whole province for the period 2016–2018. We present processing methodology in detail, with emphasis on the three-level co-registration scheme of S-1 data, retrieval of mean subsidence velocity (MSV) and subsidence time series, and mosaicking of multiple frames of results. The MSV and subsidence time series are generated for 9,276,214 selected coherent pixels (CPs) over the Jiangsu territory. Using 688 leveling measurements in evaluation, the derived MSV map of Jiangsu province shows an accuracy of 3.9 mm/year. Moreover, subsidence causes of the province are analyzed based on InSAR-derived subsidence characteristics, historical optical images, and field-work findings. Main factors accounting for the observed subsidence include: underground mining, groundwater withdrawal, soil consolidations of marine reclamation, and land-use transition from agricultural (paddy) to industrial land. This research demonstrates not only the capability of S-1 data in mapping ground deformation over wide areas in coastal and heavily vegetated region of China, but also the potential of inferring valuable knowledge from InSAR-derived results.


Author(s):  
Ahmed Wedam Ahmed ◽  
Ekrem Kalkan ◽  
Artur Guzy ◽  
Mine Alacali ◽  
Agnieszka Malinowska

Abstract. Land subsidence is a threat that occurs worldwide as a result of the withdrawal of fluid and also underground mining. The subsidence is mainly due to excessive groundwater withdrawal from certain types of rocks, such as fine-grained sediments. Mitigating the effects of land subsidence generally requires careful observations of the temporal change in groundwater level and ideally modeling of groundwater flow and subsidence. In Turkey, land subsidence is a crucial issue in the Konya Closed Basin. When simulating the effect of long-term groundwater withdrawal on the spatial variation of subsidence rates, various coupled numerical groundwater-flow and subsidence models have been used. Also, GPS, InSAR and ENVISAT SAR images have been used for verification of the models' parameters. In the work reported here, a novel numerical solution based on consolidation theory was developed in MATLAB to predict the land subsidence of the Konya Closed Basin. In order to adjust the model to the local conditions, historical data from the study area for the years 2011–2014 were used. The presented solution allowed for subsidence model development which can support the prediction of the ground movement for the Konya Closed Basin in Turkey.


2012 ◽  
Vol 256-259 ◽  
pp. 15-18
Author(s):  
Shi Bo Li ◽  
Hong Jian Lu

Weibull distribution was applied to calculate the ground subsidence and deflection value, in order to analysis accurately the influence of ground subsidence caused by underground mining on high voltage electric power lines. The results showed that the effect of reducing surface subsidence was notable and the high power line was working normally. It was accurate enough to calculate ground deformation by using Weibull distribution, and Matlab program can be used to solve the function feasibly.


Author(s):  
M. M. Peng ◽  
C. Y. Zhao ◽  
Q. Zhang ◽  
J. Zhang ◽  
Y. Y. Liu

The ancient Xi’an, China, has been suffering severe land subsidence and ground fissure hazards since the 1960s, which has affected the safety of Subways. Multi-sensor SAR data are conducted to monitor the latest complex ground deformation and its influence on subway line No.3 over Xi’an. Annual deformation rates have been retrieved to reveal the spatiotemporal evolution of ground subsidence in Xi’an city from 2013 to 2017. Meanwhile, the correlation between land subsidence and ground fissures are analyzed by retrieving the deformation differences in both sides of the fissures. Besides, the deformation along subway line No. 3 is analyzed, and the fast deformation section is quantitatively studied. Finally, a flat lying sill model with distributed contractions is implemented to model the InSAR deformation over YHZ subsidence center, which manifests that the ground deformation is mainly caused by groundwater withdrawal.


Author(s):  
Lucyna FLORKOWSKA ◽  
Izabela BRYT-NITARSKA ◽  
Janusz KRUCZKOWSKI

Human activity causes transformations in the near-surface layers of the rock mass, which result in long-term impacts on buildings and engineering infrastructure. Mining activities are particularly disadvantageous in this context, as they trigger severe deformation processes that reach the soil surface as a result of the excavation of deposits. The prevention of accidents and disasters caused by these impacts is based on knowledge derived from observation. Therefore, the aim of this study was to acquire and update knowledge on the impact of mining-related ground deformation and tremors on buildings.  The paper presents the results of measurements carried out on a group of buildings located in an underground mining area. The buildings have been affected by mining impacts since their construction in the 1980s. Despite the implementation of appropriate structural protection, the structures have been suffering deformation and damage. For the purposes of the study, two two-axis inclinometers were installed on the 15.2 m high bell tower, taking measurements at 6-hour intervals. Over a period of 10 months, changes in the leaning of the tower were measured and the condition of the other buildings observed.The study resulted in obtaining: values for the change in tilt of the two perpendicular walls of the tower (over a period of 10 months), correlation of the results with tremors measurements and periodic surveying measurements of the inclination of the vertical edge of the tower, image of damage to buildings caused by mining deformation of the ground. On the basis of an analysis of the location and timing of minefields excavation, the occurrence of real ground movement in the mining areas, continuing even after the end of mining works, was confirmed and irregular deformation of the originally perpendicular walls of the masonry tower building was demonstrated. The tower did not behave as a rigid body; its horizontal profile was deformed.


2021 ◽  
Vol 11 (19) ◽  
pp. 9323
Author(s):  
Zikun Li ◽  
Jianbing Lv ◽  
Xiaodong Xie ◽  
Helin Fu ◽  
Juan Huang ◽  
...  

This study defined the height ratio of soft-rock strata and established a numerical model for analyzing shield construction in upper-soft, lower-hard composite strata together with field monitoring data. In this way, the influence of shield tunneling while passing under the pile foundation of the culvert at a short distance (the shortest distance is 1.4 m) in the typical upper-soft, lower-hard composite strata in Guangzhou can be examined. Moreover, the reinforcement effects of the ground, the bridges, and the culverts, using the strata-reinforcing plan dominated by the metro jet system (MJS) in a narrow space, are evaluated. Based on the results, (i) the maximum ground subsidence is found at the position in which the height ratio of the soft rock is 1.0. (ii) However, differential subsidence might be found in the subsequent shield construction when the soft-rock height ratio of the adjacent excavated surface ranges from 0 to 0.2 and from 0.5 to 1. (iii) The concentrated release of stress has a greater impact on the structure than the geological conditions of the shield tunneling face. (iv) Reinforcing with the MJS method contains the concentrated release of stress. This study can provide a reference for controlling the deformation of the under-crossing structure in the shield construction of the upper-soft, lower-hard composite strata.


Sign in / Sign up

Export Citation Format

Share Document