Influence of overexpression of a gibberellin 20-oxidase gene on the kinetics of xylem cell development in hybrid poplar (Populus tremula L. and P. tremuloides Michx.)

Holzforschung ◽  
2006 ◽  
Vol 60 (6) ◽  
pp. 608-617 ◽  
Author(s):  
Oliver Dünisch ◽  
Matthias Fladung ◽  
Satoshi Nakaba ◽  
Yoko Watanabe ◽  
Ryo Funada

Abstract Gibberellins (GAs) are important regulators of shoot growth in trees. We studied the kinetics of xylem formation in hybrid poplar (Populus tremula L.×P. tremuloides Michx.) in which the key regulatory gene gibberellin acid 20 oxidase (GA20-oxidase) isolated from Arabidopsis is overexpressed. Increments in the height and radius of shoots were registered by high-resolution laser measurements. The anatomical and chemical structure of mature xylem cells was studied by light electron microscopy and UV spectrophotometry. Transgenic plants showed an increase in height growth, but a lower speed of cell elongation during primary growth compared to wild-type plants. During the first year of growth, transgenic plants showed a higher radius increment, an increase in the period of cell expansion of vessels and fibres and their final size, and a higher lignin content of the compound middle lamella between fibres compared to wild-type plants. In contrast, during the third year of growth, only a slight increase in the period of cell expansion of fibre cells was observed in transgenic compared to wild-type plants. Analyses of GA20-oxidase expression in leaves and shoots of 6-month- and 3-year-old plants of three different independent transgenic lines revealed a decrease in its expression only in shoots but not in leaves of the 3-year-old plants. The results indicate that overexpression of the GA20-oxidase gene in young shoots of transgenic poplar predominately affects cell expansion, while no GA20-oxidase expression was observed in shoots of 3-year-old transgenic plants, resulting in wild-type xylem cell development.

2013 ◽  
Vol 26 (2) ◽  
pp. 227-239 ◽  
Author(s):  
Xue Qin ◽  
Jun Hua Liu ◽  
Wen Sheng Zhao ◽  
Xu Jun Chen ◽  
Ze Jian Guo ◽  
...  

Gibberellin (GA) 20-oxidase (GA20ox) catalyses consecutive steps of oxidation in the late part of the GA biosynthetic pathway. A T-DNA insertion mutant (17S-14) in rice, with an elongated phenotype, was isolated. Analysis of the flanking sequences of the T-DNA insertion site revealed that an incomplete T-DNA integration resulted in enhanced constitutively expression of downstream OsGA20ox3 in the mutant. The accumulation of bioactive GA1 and GA4 were increased in the mutant in comparison with the wild-type plant. Transgenic plants overexpressing OsGA20ox3 showed phenotypes similar to those of the 17S-14 mutant, and the RNA interference (RNAi) lines that had decreased OsGA20ox3 expression exhibited a semidwarf phenotype. Expression of OsGA20ox3 was detected in the leaves and roots of young seedlings, immature panicles, anthers, and pollens, based on β-glucuronidase (GUS) activity staining in transgenic plants expressing the OsGA20ox3 promoter fused to the GUS gene. The OsGA20ox3 RNAi lines showed enhanced resistance against rice pathogens Magnaporthe oryzae (causing rice blast) and Xanthomonas oryzae pv. oryzae (causing bacterial blight) and increased expression of defense-related genes. Conversely, OsGA20ox3-overexpressing plants were more susceptible to these pathogens comparing with the wild-type plants. The susceptibility of wild-type plants to X. oryzae pv. oryzae was increased by exogenous application of GA3 and decreased by S-3307 treatment. Together, the results provide direct evidence for a critical role of OsGA20ox3 in regulating not only plant stature but also disease resistance in rice.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Veronica Giourieva ◽  
Emmanuel Panteris

Abstract Background Cortical microtubules regulate cell expansion by determining cellulose microfibril orientation in the root apex of Arabidopsis thaliana. While the regulation of cell wall properties by cortical microtubules is well studied, the data on the influence of cell wall to cortical microtubule organization and stability remain scarce. Studies on cellulose biosynthesis mutants revealed that cortical microtubules depend on Cellulose Synthase A (CESA) function and/or cell expansion. Furthermore, it has been reported that cortical microtubules in cellulose-deficient mutants are hypersensitive to oryzalin. In this work, the persistence of cortical microtubules against anti-microtubule treatment was thoroughly studied in the roots of several cesa mutants, namely thanatos, mre1, any1, prc1-1 and rsw1, and the Cellulose Synthase Interacting 1 protein (csi1) mutant pom2-4. In addition, various treatments with drugs affecting cell expansion were performed on wild-type roots. Whole mount tubulin immunolabeling was applied in the above roots and observations were performed by confocal microscopy. Results Cortical microtubules in all mutants showed statistically significant increased persistence against anti-microtubule drugs, compared to those of the wild-type. Furthermore, to examine if the enhanced stability of cortical microtubules was due to reduced cellulose biosynthesis or to suppression of cell expansion, treatments of wild-type roots with 2,6-dichlorobenzonitrile (DCB) and Congo red were performed. After these treatments, cortical microtubules appeared more resistant to oryzalin, than in the control. Conclusions According to these findings, it may be concluded that inhibition of cell expansion, irrespective of the cause, results in increased microtubule stability in A. thaliana root. In addition, cell expansion does not only rely on cortical microtubule orientation but also plays a regulatory role in microtubule dynamics, as well. Various hypotheses may explain the increased cortical microtubule stability under decreased cell expansion such as the role of cell wall sensors and the presence of less dynamic cortical microtubules.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 996
Author(s):  
Jenni Virtanen ◽  
Ruut Uusitalo ◽  
Essi M. Korhonen ◽  
Kirsi Aaltonen ◽  
Teemu Smura ◽  
...  

Increasing evidence suggests that some newly emerged SARS-CoV-2 variants of concern (VoCs) resist neutralization by antibodies elicited by the early-pandemic wild-type virus. We applied neutralization tests to paired recoveree sera (n = 38) using clinical isolates representing the first wave (D614G), VoC1, and VoC2 lineages (B.1.1.7 and B 1.351). Neutralizing antibodies inhibited contemporary and VoC1 lineages, whereas inhibition of VoC2 was reduced 8-fold, with 50% of sera failing to show neutralization. These results provide evidence for the increased potential of VoC2 to reinfect previously SARS-CoV-infected individuals. The kinetics of NAbs in different patients showed similar decline against all variants, with generally low initial anti-B.1.351 responses becoming undetectable, but with anti-B.1.1.7 NAbs remaining detectable (>20) for months after acute infection.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Madhavi Latha Gandla ◽  
Niklas Mähler ◽  
Sacha Escamez ◽  
Tomas Skotare ◽  
Ogonna Obudulu ◽  
...  

Abstract Background Bioconversion of wood into bioproducts and biofuels is hindered by the recalcitrance of woody raw material to bioprocesses such as enzymatic saccharification. Targeted modification of the chemical composition of the feedstock can improve saccharification but this gain is often abrogated by concomitant reduction in tree growth. Results In this study, we report on transgenic hybrid aspen (Populus tremula × tremuloides) lines that showed potential to increase biomass production both in the greenhouse and after 5 years of growth in the field. The transgenic lines carried an overexpression construct for Populus tremula × tremuloides vesicle-associated membrane protein (VAMP)-associated protein PttVAP27-17 that was selected from a gene-mining program for novel regulators of wood formation. Analytical-scale enzymatic saccharification without any pretreatment revealed for all greenhouse-grown transgenic lines, compared to the wild type, a 20–44% increase in the glucose yield per dry weight after enzymatic saccharification, even though it was statistically significant only for one line. The glucose yield after enzymatic saccharification with a prior hydrothermal pretreatment step with sulfuric acid was not increased in the greenhouse-grown transgenic trees on a dry-weight basis, but increased by 26–50% when calculated on a whole biomass basis in comparison to the wild-type control. Tendencies to increased glucose yields by up to 24% were present on a whole tree biomass basis after acidic pretreatment and enzymatic saccharification also in the transgenic trees grown for 5 years on the field when compared to the wild-type control. Conclusions The results demonstrate the usefulness of gene-mining programs to identify novel genes with the potential to improve biofuel production in tree biotechnology programs. Furthermore, multi-omic analyses, including transcriptomic, proteomic and metabolomic analyses, performed here provide a toolbox for future studies on the function of VAP27 proteins in plants.


Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


Author(s):  
Daria Nitarska ◽  
Robert Boehm ◽  
Thomas Debener ◽  
Rares Calin Lucaciu ◽  
Heidi Halbwirth

AbstractThe CRISPR/Cas9 system is a remarkably promising tool for targeted gene mutagenesis, and becoming ever more popular for modification of ornamental plants. In this study we performed the knockout of flavonoid 3′-hydroxylase (F3′H) with application of CRISPR/Cas9 in the red flowering poinsettia (Euphorbia pulcherrima) cultivar ‘Christmas Eve’, in order to obtain plants with orange bract colour, which accumulate prevalently pelargonidin. F3′H is an enzyme that is necessary for formation of cyanidin type anthocyanins, which are responsible for the red colour of poinsettia bracts. Even though F3′H was not completely inactivated, the bract colour of transgenic plants changed from vivid red (RHS 45B) to vivid reddish orange (RHS 33A), and cyanidin levels decreased significantly compared with the wild type. In the genetically modified plants, an increased ratio of pelargonidin to cyanidin was observed. By cloning and expression of mutated proteins, the lack of F3′H activity was confirmed. This confirms that a loss of function mutation in the poinsettia F3′H gene is sufficient for obtaining poinsettia with orange bract colour. This is the first report of successful use of CRISPR/Cas9 for genome editing in poinsettia.


2018 ◽  
Vol 64 (No. 8) ◽  
pp. 379-385 ◽  
Author(s):  
Zhu Bo ◽  
Han Hongjuan ◽  
Fu Xiaoyan ◽  
Li Zhenjun ◽  
Gao Jianjie ◽  
...  

The explosive 2,4,6-trinitrotoluene (TNT) is a highly toxic and persistent environmental pollutant. TNT is toxic to many organisms, it is known to be a potential human carcinogen, and is persistent in the environment. This study presents a system of phytoremediation by Arabidopsis plants developed on the basis of overexpression of NAD(P)H-flavin nitroreductase (NFSB) from the Sulfurimonas denitrificans DSM1251. The resulting transgenic Arabidopsis plants demonstrated significantly enhanced TNT tolerance and a strikingly higher capacity to remove TNT from their media. The highest specific rate constant of TNT disappearance rate was 1.219 and 2.297 mL/g fresh weight/h for wild type and transgenic plants, respectively. Meanwhile, the nitroreductase activity in transgenic plant was higher than wild type plant. All this indicates that transgenic plants show significantly enhanced tolerances to TNT; transgenic plants also exhibit strikingly higher capabilities of removing TNT from their media and high efficiencies of transformation.


2007 ◽  
Vol 176 (3) ◽  
pp. 263-268 ◽  
Author(s):  
Adam C. Smith ◽  
Won Do Heo ◽  
Virginie Braun ◽  
Xiuju Jiang ◽  
Chloe Macrae ◽  
...  

Members of the Rab guanosine triphosphatase (GTPase) family are key regulators of membrane traffic. Here we examined the association of 48 Rabs with model phagosomes containing a non-invasive mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium). This mutant traffics to lysosomes and allowed us to determine which Rabs localize to a maturing phagosome. In total, 18 Rabs associated with maturing phagosomes, each with its own kinetics of association. Dominant-negative mutants of Rab23 and 35 inhibited phagosome–lysosome fusion. A large number of Rab GTPases localized to wild-type Salmonella-containing vacuoles (SCVs), which do not fuse with lysosomes. However, some Rabs (8B, 13, 23, 32, and 35) were excluded from wild-type SCVs whereas others (5A, 5B, 5C, 7A, 11A, and 11B) were enriched on this compartment. Our studies demonstrate that a complex network of Rab GTPases controls endocytic progression to lysosomes and that this is modulated by S. Typhimurium to allow its intracellular growth.


2014 ◽  
Vol 58 (9) ◽  
pp. 5297-5305 ◽  
Author(s):  
Tiffany R. Keepers ◽  
Marcela Gomez ◽  
Chris Celeri ◽  
Wright W. Nichols ◽  
Kevin M. Krause

ABSTRACTAvibactam, a non-β-lactam β-lactamase inhibitor with activity against extended-spectrum β-lactamases (ESBLs), KPC, AmpC, and some OXA enzymes, extends the antibacterial activity of ceftazidime against most ceftazidime-resistant organisms producing these enzymes. In this study, the bactericidal activity of ceftazidime-avibactam against 18Pseudomonas aeruginosaisolates and 15Enterobacteriaceaeisolates, including wild-type isolates and ESBL, KPC, and/or AmpC producers, was evaluated. Ceftazidime-avibactam MICs (0.016 to 32 μg/ml) were lower than those for ceftazidime alone (0.06 to ≥256 μg/ml) against all isolates except for 2P. aeruginosaisolates (1blaVIM-positive isolate and 1blaOXA-23-positive isolate). The minimum bactericidal concentration/MIC ratios of ceftazidime-avibactam were ≤4 for all isolates, indicating bactericidal activity. Human serum and human serum albumin had a minimal effect on ceftazidime-avibactam MICs. Ceftazidime-avibactam time-kill kinetics were evaluated at low MIC multiples and showed time-dependent reductions in the number of CFU/ml from 0 to 6 h for all strains tested. A ≥3-log10decrease in the number of CFU/ml was observed at 6 h for allEnterobacteriaceae, and a 2-log10reduction in the number of CFU/ml was observed at 6 h for 3 of the 6P. aeruginosaisolates. Regrowth was noted at 24 h for some of the isolates tested in time-kill assays. These data demonstrate the potent bactericidal activity of ceftazidime-avibactam and support the continued clinical development of ceftazidime-avibactam as a new treatment option for infections caused byEnterobacteriaceaeandP. aeruginosa, including isolates resistant to ceftazidime by mechanisms dependent on avibactam-sensitive β-lactamases.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2839 ◽  
Author(s):  
Jia-qing Yan ◽  
Yu-he Yuan ◽  
Shi-feng Chu ◽  
Guo-hui Li ◽  
Nai-hong Chen

Genetic studies have revealed that rare mutations and multiplications of the gene locus in α-synuclein (α-syn) are implicated in the pathogenesis of Parkinson’s disease (PD). However, the pathological effects of α-syn are still obscure. The neurotoxicity of α-syn is mainly determined by its protein levels, which depend on a balance between synthesis and degradation. Therefore, verifying the possible routes contributing to the clearance of α-syn is important for PD therapy. In this study, we established stable lines overexpressing human wild-type (WT) and E46K mutant α-syn in rat PC12 cells and investigated the degradation pathways of α-syn by using a panel of inhibitors and inducers of lysosome and proteasome function. We also monitored the degradation kinetics of α-syn by using cycloheximide to block protein synthesis. Our data showed that both proteasome and chaperon-mediated autophagy (CMA) are responsible for the degradation of the WT α-syn. Meanwhile, E46K mutant α-syn is mainly degraded by the proteasome and macroautophagy pathway. Compared with the WT protein, E46K mutant α-syn turned over more slowly in PC12 cells. In addition, overexpression of E46K mutant α-syn increased vulnerability of PC12 cells to apoptosis insults when compared with WT α-syn. Our findings may verify the possible routes contributing to the degradation of the E46K mutant α-syn.


Sign in / Sign up

Export Citation Format

Share Document