Interaction of high-intensity endurance exercise and nandrolone on cardiac remodeling: role of adipo-cardiac axis

Author(s):  
Manijeh Motevalian ◽  
Siyavash Joukar ◽  
Saeed Esmaeili-Mahani ◽  
Abdollah Karimi ◽  
Yaser Masoumi-Ardakani ◽  
...  

Abstract Objectives Given the cardiac pathological remodeling following to anabolic androgenic steroids (AASs) consumption, we examined the effect of chronic administration of nandrolone decanoate with high-intensity endurance exercise on the left ventricular hypertrophy index, levels of hydroxyproline, tumor necrosis factor-alpha (TNF-α), adiponectin (APN) and its receptors (AdipoR1 and AdipoR2) expression in rats’ hearts. Methods The male Wistar rats randomly divided to six groups included the control (CTL), exercise (Ex), nandrolone (Nan), vehicle (Arach), trained vehicle (Ex + Arach), and trained nandrolone (Ex + Nan) groups that were treated for eight weeks. Results Nandrolone consumption significantly enhanced the hypertrophy index (p<0.05) and exercise intensified this effect. It also increased the level of cardiac hydroxyproline (p<0.001), however exercise completely masked this effect. The values of TNF-α protein and AdipoR1 protein significantly increased in trained nandrolone-treated (Ex + Nan) group in comparison with CTL group (p<0.05), however, did not show significant alteration in Nan or Ex groups. High-intensity endurance exercise significantly enhanced the AdipoR2 protein (p<0.05), but, co-administration of nandrolone with exercise prevented this effect. The mRNA expression of AdipoR1 significantly reduced in the animals that received nandrolone for eight weeks and exercise recovered this effect (p<0.001). Conclusions Despite an additive effect of high-intensity endurance exercise plus nandrolone on TNF-α level, their effects on hydroxyproline and APN receptors expression is incompatible in heart of rat. It is suggests a part of beneficial regulatory role of endurance exercise against nandrolone induced heart remodeling may apply through modulation of APN system.

2012 ◽  
pp. 13-24 ◽  
Author(s):  
M. MOUBARAK ◽  
H. JABBOUR ◽  
V. SMAYRA ◽  
E. CHOUERY ◽  
Y. SALIBA ◽  
...  

The aim of our study was to evaluate a possible association between microalbuminuria (MA), several low-grade inflammation factors and left ventricular hypertrophy (LVH) by using a pharmacological approach. This may provide new insights into the pathophysiologic mechanisms of the cardiorenal syndrome (CRS) linking early renal impairment with elevated cardiovascular risk. Two kidney-one clip (2K-1C) renovascular hypertension was induced in 24 male Wistar rats (220-250 g). After the development of hypertension, rats were divided into four groups: 2K-1C (untreated), calcium channel blocker (amlodipine-treated), angiotensin receptor blocker (losartan-treated) and peripheral vasodilator (hydralazine-treated), which were treated for 10 weeks. Rats in the 2K-1C group had all developed hypertension, a significant increase in plasma levels of tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), brain natriuretic peptide (BNP) and C-reactive protein (CRP). Moreover MA and creatininaemia underwent a significant increase. Under treatment decreases were observed in systolic blood pressure (SBP), TNF-α, CRP, IL-6, BNP concentrations and creatininaemia. These results were related to the absence of MA which was significantly associated with reductions in cardiac mass and hypertrophy markers (BNP and β-MHC gene expression) as well as renal interstitial inflammation. In conclusion, our results suggest that the reduction of MA is correlated with the decrease of the inflammatory components and seems to play an important role in protecting against cardiac hypertrophy and renal injury.


Author(s):  
Sridhar Muthusami ◽  
Ilangovan Ramachandran ◽  
Sneha Krishnamoorthy ◽  
Yuvaraj Sambandam ◽  
Satish Ramalingam ◽  
...  

: The development of colorectal cancer (CRC) is a multi-stage process. The inflammation of the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease (CD) is often regarded as the initial trigger for the development of CRC. Many cytokines such as tumor necrosis factor alpha (TNF-α) and several interleukins (ILs) are known to exert proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers, including CRC through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown. Consolidating the published results and offering perspective solutions to circumvent CRC, the current review is focused on the role of miRNAs and their regulation in the development of CRC. We have also discussed the model systems adapted by researchers to delineate the role of miRNAs in inflammation-associated CRC.


Author(s):  
Sridhar Muthusami ◽  
R. Ileng Kumaran ◽  
Kokelavani Nampalli Babu ◽  
Sneha Krishnamoorthy ◽  
Akash Guruswamy ◽  
...  

: Chronic inflammation can lead to the development of many diseases including cancer. Inflammatory bowel disease (IBD) that includes both ulcerative colitis (UC) and Crohn's disease (CD) are risk factors for the development of colorectal cancer (CRC). Many cytokines produced primarily by the gut immune cells either during or in response to localized inflammation in the colon and rectum are known to stimulate the complex interactions between the different cell types in the gut environment resulting in acute inflammation. Subsequently, chronic inflammation together with genetic and epigenetic changes has been shown to lead to the development and progression of CRC. Various cell types present in the colon such as enterocytes, Paneth cells, goblet cells and macrophages express receptors for inflammatory cytokines and respond to tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), IL-6 and other cytokines. Among the several cytokines produced, TNF-α and IL-1β are the key proinflammatory molecules that play critical roles in the development of CRC. The current review is intended to consolidate the published findings to focus on the role of proinflammatory cytokines, namely TNF-α and IL-1β, on inflammation (and the altered immune response) in the gut, to better understand the development of CRC in IBD, using various experimental model systems, preclinical and clinical studies. Moreover, this review also highlights the current therapeutic strategies available (monotherapy and combination therapy), to alleviate the symptoms or treat inflammationassociated CRC by using monoclonal antibodies or aptamers to block proinflammatory molecules, inhibitors of tyrosine kinases in inflammatory signaling cascade, competitive inhibitors of proinflammatory molecules, and the nucleic acid drugs like small activating RNAs (saRNAs) or microRNA (miRNA) mimics to activate tumor suppressor or repress oncogene/proinflammatory cytokine gene expression.


Antioxidants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 967
Author(s):  
Micaely Cristina dos Santos Tenório ◽  
Nayara Gomes Graciliano ◽  
Fabiana Andréa Moura ◽  
Alane Cabral Menezes de Oliveira ◽  
Marília Oliveira Fonseca Goulart

N-acetylcysteine (NAC) is a medicine widely used to treat paracetamol overdose and as a mucolytic compound. It has a well-established safety profile, and its toxicity is uncommon and dependent on the route of administration and high dosages. Its remarkable antioxidant and anti-inflammatory capacity is the biochemical basis used to treat several diseases related to oxidative stress and inflammation. The primary role of NAC as an antioxidant stems from its ability to increase the intracellular concentration of glutathione (GSH), which is the most crucial biothiol responsible for cellular redox imbalance. As an anti-inflammatory compound, NAC can reduce levels of tumor necrosis factor-alpha (TNF-α) and interleukins (IL-6 and IL-1β) by suppressing the activity of nuclear factor kappa B (NF-κB). Despite NAC’s relevant therapeutic potential, in several experimental studies, its effectiveness in clinical trials, addressing different pathological conditions, is still limited. Thus, the purpose of this chapter is to provide an overview of the medicinal effects and applications of NAC to human health based on current therapeutic evidence.


2017 ◽  
Vol 68 (1) ◽  
pp. 27-37 ◽  
Author(s):  
Mahmoud M. Said ◽  
Marwa M. Abd Rabo

AbstractAluminium (Al) is a neurotoxic metal that contributes to the progression of several neurodegenerative diseases. The aim of the present study was to evaluate the protective effect of dietary eugenol supplementation against aluminium (Al)- induced cerebral damage in rats. Male Wistar rats were divided into four groups: normal controls, rats fed a diet containing 6,000 μg g-1eugenol, rats intoxicated daily with aluminium chloride (84 mg kg-1body weight) p. o. and fed either a basal diet or a eugenol-containing diet. Daily oral administration of Al for four consecutive weeks to rats significantly reduced brain total antioxidant status (TAS) (11.42±0.31 μmol g-1tissue, p<0.001) with a subsequent significant enhancement of lipid peroxidation (MDA) (32.55±1.68 nmol g-1tissue, p<0.002). In addition, Al enhanced brain acetylcholinesterase activity (AChE) (46.22±4.90 U mg-1protein, p<0.001), tumour necrosis factor alpha (TNF-α) (118.72±11.32 pg mg-1protein, p<0.001), and caspase 3 (Casp-3) (8.77±1.26 ng mg-1protein, p<0.001) levels, and in contrast significantly suppressed brain-derived neurotrophic factor (BDNF) (82.74±14.53 pg mg-1protein, p<0.002) and serotonin (5-HT) (1.54±0.12 ng mg-1tissue, p<0.01) levels. Furthermore, decreased glial fibrillary acidic protein (GFAP) immunostaining was noticed in the striatum of Al-intoxicated rats, compared with untreated controls. On the other hand, co-administration of dietary eugenol with Al intoxication restored brain BDNF (108.76±2.64 pg mg-1protein) and 5-HT (2.13±0.27 ng mg-1tissue) to normal levels, enhanced brain TAS (13.43±0.24 μmol g-1tissue, p<0.05), with a concomitant significant reduction in TNF-α (69.98±4.74 pg mg-1protein) and Casp-3 (3.80±0.37 ng mg-1protein) levels (p<0.001), as well as AChE activity (24.50±3.25 U mg-1protein, p<0.001), and increased striatal GFAP immunoreactivity, compared with Al-treated rats. Histological findings of brain tissues verified biochemical data. In conclusion, eugenol holds potential as a neuroprotective agent through its hydrophobic, antioxidant, and anti-apoptotic properties, as well as its neurotrophic ability against Al-induced brain toxicity in rats.


2001 ◽  
Vol 75 (1) ◽  
pp. 215-225 ◽  
Author(s):  
Fei Su ◽  
Christian N. Theodosis ◽  
Robert J. Schneider

ABSTRACT Chronic infection with hepatitis B virus (HBV) promotes a high level of liver disease and cancer in humans. The HBV HBx gene encodes a small regulatory protein that is essential for viral replication and is suspected to play a role in viral pathogenesis. HBx stimulates cytoplasmic signal transduction pathways, moderately stimulates a number of transcription factors, including several nuclear factors, and in certain settings sensitizes cells to apoptosis by proapoptotic stimuli, including tumor necrosis factor alpha (TNF-α) and etopocide. Paradoxically, HBx activates members of the NF-κB transcription factor family, some of which are antiapoptotic in function. HBx induces expression of Myc protein family members in certain settings, and Myc can sensitize cells to killing by TNF-α. We therefore examined the roles of NF-κB, c-Myc, and TNF-α in apoptotic killing of cells by HBx. RelA/NF-κB is shown to be induced by HBx and to suppress HBx-mediated apoptosis. HBx also induces c-Rel/NF-κB, which can promote apoptotic cell death in some contexts or block it in others. Induction of c-Rel by HBx was found to inhibit its ability to directly mediate apoptotic killing of cells. Thus, HBx induction of NF-κB family members masks its ability to directly mediate apoptosis, whereas ablation of NF-κB reveals it. Investigation of the role of Myc protein demonstrates that overexpression of Myc is essential for acute sensitization of cells to killing by HBx plus TNF-α. This study therefore defines a specific set of parameters which must be met for HBx to possibly contribute to HBV pathogenesis.


2003 ◽  
Vol 71 (9) ◽  
pp. 4873-4882 ◽  
Author(s):  
Qian Li ◽  
Bobby J. Cherayil

ABSTRACT Toll-like receptors (TLRs) play an important role in the innate immune response, particularly in the initial interaction between the infecting microorganism and phagocytic cells, such as macrophages. We investigated the role of TLR4 during infection of primary murine peritoneal macrophages with Salmonella enterica serovar Typhimurium. We found that macrophages from the C3H/HeJ mouse strain, which carries a functionally inactive Tlr4 gene, exhibit marked impairment of tumor necrosis factor alpha (TNF-α) secretion in response to S. enterica serovar Typhimurium infection. However, activation of extracellular growth factor-regulated kinase and NF-κB signaling pathways was relatively unaffected, as was increased expression of TNF-α mRNA. Furthermore, macrophage tolerance, which is associated with increased expression of the NF-κB p50 and p52 subunits, was induced by S. enterica serovar Typhimurium even in the absence of functional TLR4. These results indicate that during infection of macrophages by S. enterica serovar Typhimurium, TLR4 signals are required at a posttranscriptional step to maximize secretion of TNF-α. Signals delivered by pattern recognition receptors other than TLR4 are sufficient for the increased expression of the TNF-α transcript and at least some genes associated with macrophage tolerance.


2000 ◽  
Vol 68 (5) ◽  
pp. 2907-2915 ◽  
Author(s):  
Suttichai Krisanaprakornkit ◽  
Janet R. Kimball ◽  
Aaron Weinberg ◽  
Richard P. Darveau ◽  
Brian W. Bainbridge ◽  
...  

ABSTRACT Human gingival epithelial cells (HGE) express two antimicrobial peptides of the β-defensin family, human β-defensin 1 (hBD-1) and hBD-2, as well as cytokines and chemokines that contribute to innate immunity. In the present study, the expression and transcriptional regulation of hBD-2 was examined. HBD-2 mRNA was induced by cell wall extract of Fusobacterium nucleatum, an oral commensal microorganism, but not by that of Porphyromonas gingivalis, a periodontal pathogen. HBD-2 mRNA was also induced by the proinflammatory cytokine tumor necrosis factor alpha (TNF-α) and phorbol myristate acetate (PMA), an epithelial cell activator. HBD-2 mRNA was also expressed in 14 of 15 noninflamed gingival tissue samples. HBD-2 peptide was detected by immunofluorescence in HGE stimulated with F. nucleatum cell wall, consistent with induction of the mRNA by this stimulant. Kinetic analysis indicates involvement of multiple distinct signaling pathways in the regulation of hBD-2 mRNA; TNF-α and F. nucleatum cell wall induced hBD-2 mRNA rapidly (2 to 4 h), while PMA stimulation was slower (∼10 h). In contrast, each stimulant induced interleukin 8 (IL-8) within 1 h. The role of TNF-α as an intermediary in F. nucleatum signaling was ruled out by addition of anti-TNF-α that did not inhibit hBD-2 induction. However, inhibitor studies show that F. nucleatum stimulation of hBD-2 mRNA requires both new gene transcription and new protein synthesis. Bacterial lipopolysaccharides isolated from Escherichia coli andF. nucleatum were poor stimulants of hBD-2, although they up-regulated IL-8 mRNA. Collectively, our findings show inducible expression of hBD-2 mRNA via multiple pathways in HGE in a pattern that is distinct from that of IL-8 expression. We suggest that different aspects of innate immune responses are differentially regulated and that commensal organisms have a role in stimulating mucosal epithelial cells in maintaining the barrier that contributes to homeostasis and host defense.


Sign in / Sign up

Export Citation Format

Share Document