scholarly journals Fused deposition modeling of poly(ether ether ketone) scaffolds

2021 ◽  
Vol 40 (1) ◽  
pp. 1-11
Author(s):  
Xiaohui Song ◽  
Dengwen Shi ◽  
Pinghui Song ◽  
Xingguo Han ◽  
Qingsong Wei ◽  
...  

Abstract In this paper, poly(ether ether ketone) (PEEK) scaffold was manufactured using the fused deposition modeling (FDM) technology with a modified platform. The effect of processing parameters of FDM on the porosity and compressive strength of PEEK scaffold with uniform pores (0.8 mm of diameter) was optimized through Taguchi methodology. With the determined parameters, four kinds of PEEK scaffolds with gradient pores (0.4–0.8 mm, 0.6–1.0 mm, 0.8–1.2 mm, and 1.2–2.0 mm) were manufactured. The scaffolds were investigated using scanning electron microscopy. The results showed that the pores of scaffolds were interconnected with rough surface, which can allow the attachment, migration, and differentiation of cells for bone forming. The tensile strength, compressive max strength, and compressive yield strength of scaffolds were between 18 and 35 MPa, 197.83 and 370.42 MPa, and 26 and 36 MPa, respectively. The mechanical properties of the scaffolds can satisfy the loading requirements of human bones. Therefore, the PEEK scaffolds have a potential to be used in tissue engineering as implants.

RSC Advances ◽  
2020 ◽  
Vol 10 (43) ◽  
pp. 25685-25695
Author(s):  
Cheng Yang ◽  
Jing Xu ◽  
Yue Xing ◽  
Sijia Hao ◽  
Zhidong Ren

A polymer “bridge” was designed to connect graphene oxide and poly(ether ether ketone), making stronger and tougher composites.


2022 ◽  
pp. 095400832110673
Author(s):  
Pei Wang ◽  
Aigang Pan ◽  
Liu Xia ◽  
Yitao Cao ◽  
Hongjie Zhang ◽  
...  

As a rapidly developing additive manufacturing technology, fused deposition modeling (FDM) has become widespread in many industry fields. It can fabricate complicated geometries using filament of thermoplastic materials such as PP, polylactic acid, acrylonitrile butadiene styrene, etc. However, poor mechanical properties of raw materials limit their application. Poly-ether-ether-ketone is a type of special engineering plastic with high performance, which could be further reinforced by adding carbon fibers (CFs). During FDM process, the mechanical properties of printed parts are largely subject to careful selection of process parameters. To improve the mechanical properties of PEEK and CF/PEEK 3D-printed parts, the effects of various process parameters including building orientation, raster angle, nozzle temperature, platform temperature, ambient temperature, printing speed, layer thickness, infill density, and number of printed parts on mechanical properties were investigated. The tensile fracture interfaces of printed parts were observed by scanning electron microscope (SEM) to explain the influence mechanism of process parameters. In the single factor experiments, flat and on-edge specimens show the best tensile and flexural strength, respectively; the specimens with raster angle ±45° and 0° show the best tensile and flexural strength, respectively. When the nozzle temperature at 500°C, platform temperature at 200°C, ambient temperature at 150°C, printing speed is 20 mm/s, layer thickness is 0.2 mm, and infill density is 100%, the printed parts exhibit the best mechanical properties.


2021 ◽  
pp. 089270572110530
Author(s):  
Nagarjuna Maguluri ◽  
Gamini Suresh ◽  
K Venkata Rao

Fused deposition modeling (FDM) is a fast-expanding additive manufacturing technique for fabricating various polymer components in engineering and medical applications. The mechanical properties of components printed with the FDM method are influenced by several process parameters. In the current work, the influence of nozzle temperature, infill density, and printing speed on the tensile properties of specimens printed using polylactic acid (PLA) filament was investigated. With an objective to achieve better tensile properties including elastic modulus, tensile strength, and fracture strain; Taguchi L8 array has been used for framing experimental runs, and eight experiments were conducted. The results demonstrate that the nozzle temperature significantly influences the tensile properties of the FDM printed PLA products followed by infill density. The optimum processing parameters were determined for the FDM printed PLA material at a nozzle temperature of 220°C, infill density of 100%, and printing speed of 20 mm/s.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 466 ◽  
Author(s):  
Yiqiao Wang ◽  
Wolf-Dieter Müller ◽  
Adam Rumjahn ◽  
Andreas Schwitalla

In this review, we discuss the parameters of fused deposition modeling (FDM) technology used in finished parts made from polyether ether ketone (PEEK) and also the possibility of printing small PEEK parts. The published articles reporting on 3D printed PEEK implants were obtained using PubMed and search engines such as Google Scholar including references cited therein. The results indicate that although many have been experiments conducted on PEEK 3D printing, the consensus on a suitable printing parameter combination has not been reached and optimized parameters for printing worth pursuing. The printing of reproducible tiny-sized PEEK parts with high accuracy has proved to be possible in our experiments. Understanding the relationships among material properties, design parameters, and the ultimate performance of finished objects will be the basis for further improvement of the quality of 3D printed medical devices based on PEEK and to expand the polymers applications.


2013 ◽  
Vol 683 ◽  
pp. 409-412
Author(s):  
Hui Sun ◽  
Rui Chao Chen ◽  
Biao Yang ◽  
Guo Zhi Xu

The surface topography of poly(ether ether ketone) (PEEK) film immobilized with heparin and Bovine Serum Albumin (BSA) was characterized via scanning electron microscopy (SEM). Compared with the unmodified film, the surface of modified film changed and become rough, which indirectly proved the successful introduction of monomer and biomolecule on PEEK


Sign in / Sign up

Export Citation Format

Share Document