Study on the adsorption effect of diatomite on neosolaniol (NEO) in muskmelon fruits inoculated with Fusarium sulphureum

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Rui Zhang ◽  
Hua-Li Xue ◽  
Lan Li ◽  
Yang Bi ◽  
Yuan-Yuan Zong ◽  
...  

AbstractFusarium rot of muskmelon fruit is a common postharvest disease, which not only causes quantity deterioration but also leads to trichothecene accumulation in decay fruits. Neosolaniol (NEO) is one of main trichothecene, which poses a severe threat to human health. In this study, UPLC-MS/MS method was developed to determine NEO in muskmelon inoculated with Fusarium sulphureum. Diatomite was used to remove NEO in muskmelon and the adsorption kinetics, adsorption thermodynamics were analyzed in this adsorption process, and the changes of muskmelon juice quality before and after adsorption were investigated. The results showed that diatomite was a good adsorbent to remove NEO from muskmelon juice. The reaction process fits the Langmuir model and it was spontaneous exothermic reaction and not easy to be desorbed; the kinetic results showed that the maximum adsorption capacity was 12.35 μg/g, and this process fits the Pseudo-second-order model; diatomite had no significant effect on juice quality.

Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2218 ◽  
Author(s):  
Carlos Grande-Tovar ◽  
William Vallejo ◽  
Fabio Zuluaga

In this work, we synthesized chitosan grafted-polyacrylic acid (CS-g-PA) through surface-initiated atom transfer radical polymerization (SI-ATRP). We also studied the adsorption process of copper and lead ions onto the CS-g-PA surface. Adsorption equilibrium studies indicated that pH 4.0 was the best pH for the adsorption process and the maximum adsorption capacity over CS-g-PA for Pb2+ ions was 98 mg·g−1 and for Cu2+ it was 164 mg·g−1, while for chitosan alone (CS), the Pb2+ adsorption capacity was only 14.8 mg·g−1 and for Cu2+ it was 140 mg·g−1. Furthermore, the adsorption studies indicated that Langmuir model describes all the experimental data and besides, pseudo-second-order model was suitable to describe kinetic results for the adsorption process, demonstrating a larger kinetic constant of the process was larger for Pb2+ than Cu2+. Compared to other adsorbents reported, CS-g-PA had comparable or even superior adsorbent capacity and besides, all these results suggest that the new CS-g-PA polymers had potential as an adsorbent for hazardous and toxic metal ions produced by different industries.


2020 ◽  
Vol 81 (10) ◽  
pp. 2270-2280
Author(s):  
Yonggang Xu ◽  
Tianxia Bai ◽  
Yubo Yan ◽  
Yunfeng Zhao ◽  
Ling Yuan ◽  
...  

Abstract It is of great significance to remove Cr(VI) from water as a result of its high toxicity. Biochar from corn straw was modified by different acids (HNO3, H2SO4 and H3PO4) to remove Cr(VI) from aqueous solution. To estimate the removal mechanisms of Cr(VI) by the acid-modified biochars, batch experiments were performed in the light of contact time, Cr(VI) concentration, and pH, and the characteristics of acid-modified biochars before and after Cr(VI) adsorption were investigated by Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The adsorption kinetics of Cr(VI) by acid-modified biochars were consistent with the pseudo-second-order model, and the adsorption isotherm obeyed the Freundlich model. Furthermore, the acid- modified biochars could supply more oxygen-containing functional groups (-COOH and -OH) as electron donor (e−) and hydrogen ion (H+) to enhance the reduction of Cr(VI) to Cr(III), resulting in enhanced removal of Cr(VI). HNO3-modified biochar exhibited the highest removal efficiency of Cr(VI). In general, the acid modifition of biochar was an effective method to increase the removal of Cr(VI).


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


2018 ◽  
Vol 77 (5) ◽  
pp. 1363-1371 ◽  
Author(s):  
Yong Fu ◽  
Yue Huang ◽  
Jianshe Hu ◽  
Zhengjie Zhang

Abstract A green functional adsorbent (CAD) was prepared by Schiff base reaction of chitosan and amino-modified diatomite. The morphology, structure and adsorption properties of the CAD were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and Brunauer Emmett Teller measurements. The effect of pH value, contact time and temperature on the adsorption of Hg(II) ions for the CAD is discussed in detail. The experimental results showed that the CAD had a large specific surface area and multifunctional groups such as amino, hydroxyl and Schiff base. The optimum adsorption effect was obtained when the pH value, temperature and contact time were 4, 25 °C and 120 min, respectively, and the corresponding maximum adsorption capacity of Hg(II) ions reached 102 mg/g. Moreover, the adsorption behavior of Hg(II) ions for the CAD followed the pseudo-second-order kinetic model and Langmuir model. The negative ΔG0 and ΔH0 suggested that the adsorption was a spontaneous exothermic process.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mashael Alshabanat ◽  
Ghadah Alsenani ◽  
Rasmiah Almufarij

The adsorption of crystal violet (CV) onto date palm fibers (DPFs) was examined in aqueous solution at 25°C. The experimental maximum adsorption capacity value was0.66×10−6. Langmuir, Freundlich, Elovich and Temkin models were applied to describe the equilibrium isotherms. The influence of pH and temperature on dye removal was evaluated. The percentage removal of CV dye by adsorption onto DPF at different pH and temperatures showed that these factors play a role in the adsorption process. Thermodynamic analysis was performed, and the Gibbs free energyΔGο, enthalpy changeΔHο, and entropyΔSοwere calculated. The negative values ofΔGοindicate spontaneous adsorption. The negative value ofΔHοindicates that the interaction between CV and DPF is exothermic, and the positive value ofΔSοindicates good affinity between DPF and CV. The kinetic data were fitted to a pseudo-second-order model.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Ankur Gupta ◽  
Chandrajit Balomajumder

Fe modified rice husk was prepared as a low cost biosorbent for the removal of Cr(VI) and phenol both singly and in combination from single and binary simulated synthetic waste water. Rice husk was modified by treating with FeSO4·7H2O. The results showed that impregnation of iron onto the surface of rice husk improved the adsorption capability of both Cr(VI) and phenol. The effects of process parameters for multicomponent system such as pH, adsorbent dose, and contact time onto the percentage removal of both Cr(VI) and phenol were investigated. The experimental data for the adsorption of both Cr(VI) and phenol onto the surface of Fe modified rice husk applied to various kinetic and adsorption isotherm models. Multicomponent isotherm models such as Nonmodified Langmuir, Modified Langmuir, Extended Langmuir, Extended Freundlich, Competitive Nonmodified Redlich Peterson, Competitive Modified Redlich Peterson were applied. The results show that Extended Freundlich model best described the experimental data for both Cr(VI) and phenol from binary solution. Pseudo second-order model agreed well with Cr(VI) while pseudo first-order model agreed well with phenol. Maximum adsorption capacity in synthetic binary solution of Cr(VI) and phenol was found to be 36.3817 mg g−1for Cr(VI) and 6.569 mg g−1for phenol, respectively.


2016 ◽  
Vol 17 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Tianli Han ◽  
Xiaoman Zhang ◽  
Xiangqian Fu ◽  
Jinyun Liu

Chitosan nanoparticle (CS NP)-modified MnO2 nanoflakes were presented as a novel adsorbent for fast adsorption of Pb(II) from aqueous solution. Loading dense CS NPs onto mono-dispersive flower-like MnO2 nanostructures reduces the overlap of CS during adsorption, and thus improves the contact of functional adsorption sites on the surface of MnO2 nanoflakes with heavy metal ions. The results show that the removal efficiency of the nanoadsorbents reaches up to 93% in 3 min for Pb(II). In addition, the maximum adsorption capacity, effects of adsorbent dosage and pH value, and the reusability were investigated. The kinetic process and adsorption isotherm fit well with the pseudo-second-order model and Langmuir model, respectively. These findings provide a potential strategy to address the overlap issue of some common nanoadsorbents.


2020 ◽  
Vol 13 (2) ◽  
pp. 080-090
Author(s):  
Daniel Eneji Sani ◽  
John O. Idoko ◽  
Enyojo Samson Okwute ◽  
Matthew Chijioke Apeh

Unactivated adsorbent was prepared from Moringa oleifera seed shells precursor, characterized and evaluated for aqueous phase removal of phenol. The effects of operational parameters such as initial phenolic solution pH and adsorbent dosage on equilibrium sorption were studied. Adsorption isotherms and kinetic experiments performed at (25 oC) furnished some equilibrium and kinetic parameters, respectively. UAMSS shows favorable attributes on (pH, bulk density, attrition, iodine number/surface area, surface charge/functional groups and Fourier transform infrared FTIR). Phenol uptake decreases with increase in solution pH for the adsorbent. Maximum adsorption capacity Qmax (mg/g) was (6.95). The optimal pH for phenol adsorption was attained at pH 3, adsorption kinetics obeyed closely pseudo-second-order model. Adsorption of phenol was well described by Langmuir isotherm. The adsorbent shows a promise of applicability in dephenolation of aqueous effluents/wastewater.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 178
Author(s):  
Serap Sezen ◽  
Vijay Kumar Thakur ◽  
Mehmet Murat Ozmen

Currently, macroporous hydrogels have been receiving attention in wastewater treatment due to their unique structures. As a natural polymer, alginate is used to remove cationic dyes due to its sustainable features such as abundance, low cost, processability, and being environmentally friendly. Herein, alginate/montmorillonite composite macroporous hydrogels (cryogels) with high porosity, mechanical elasticity, and high adsorption yield for methylene blue (MB) were generated by the one-step cryogelation technique. These cryogels were synthesized by adding montmorillonite into gel precursor, followed by chemical cross-linking employing carbodiimide chemistry in a frozen state. The as-prepared adsorbents were analyzed by FT-IR, SEM, gel fraction, swelling, uniaxial compression, and MB adsorption tests. The results indicated that alginate/montmorillonite cryogels exhibited high gelation yield (up to 80%), colossal water uptake capacity, elasticity, and effective dye adsorption capacity (93.7%). Maximum adsorption capacity against MB was 559.94 mg g−1 by linear regression of Langmuir model onto experimental data. The Pseudo-Second-Order model was fitted better onto kinetic data compared to the Pseudo-First-Order model. Improved porosity and mechanical elasticity yielding enhanced dye removal capacity make them highly potential alternative adsorbents compared to available alginate/montmorillonite materials for MB removal.


2013 ◽  
Vol 690-693 ◽  
pp. 1033-1036 ◽  
Author(s):  
Xiao Liu ◽  
Mei Yang ◽  
Yong Yang

Slag haydite made from steel slag and clay was used for phosphate adsorption, and adsorption characteristic was studied. Results showed that the uptake of phosphate was facilitated for pH 3-8, the adsorption process fitted with pseudo-second-order model and intra-particle diffusion model, and the equilibrium time was about 3h. Isotherm adsorption data on slag haydite were fitted by both the Freundlich and Langmuir models. It was found that the data follows the Langmuir model better, and the maximum adsorption capacity increased from 1.17mg·g-1 to 2.42mg·g-1 as temperature rose from 20°C to 40°C. Thermodynamic parameters G0, H0 andS0 showed that the adsorption was spontaneous, endothermic and entropy increase process and increasing temperature was favorable.


Sign in / Sign up

Export Citation Format

Share Document