Influence of Loranthus micranthus on hepatic and renal antioxidant status and impaired glycolytic flux in streptozotocin-induced diabetic rats

2018 ◽  
Vol 29 (5) ◽  
pp. 447-461 ◽  
Author(s):  
Azubuike P. Ebokaiwe ◽  
Omamuyovwi M. Ijomone ◽  
Oscar Edeh ◽  
Ifebunachi Oteh ◽  
David E. Ebuka

Abstract Background The use of Loranthus micranthus in folklore medicine for treatment of diabetes and its associated complications is a common practice around the world. The present study investigated this traditional affirmation by in vivo investigation into the effect of L. micranthus leaf extract on hepatic and renal, oxidative status and glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Methods Diabetes mellitus was induced in adult male Wistar rats by intraperitoneal injection of STZ (60 mg/kg). The diabetic rats were thereafter treated orally once per day with 5 mg/kg gilbenclamide or L. micranthus leaf extract (100 or 200 mg/kg) and monitored for 14 days. Clinical observations, plasma biochemistry, hormonal profile, oxidative stress parameters, glucose metabolism enzymes and histopathologic examination of the liver and kidney were evaluated to monitor treatment-related effects of L. micranthus leaf extract in STZ-induced diabetic rats. Results Loranthus micranthus leaf extract administration significantly ameliorated hyperglycemia-mediated damage by decreasing the blood glucose level (45.9% and 84.7% on days 7 and 14 posttreatment, respectively), enhancing the antioxidant status, inhibiting lipid peroxidation and improving the architecture of the liver and kidney in STZ-induced diabetic rats. Furthermore, intervention of L. micranthus leaf extract restored the liver and kidney function biomarkers and increased the plasma levels of triiodothyronine and thyroxine to normal control in STZ-induced diabetic rats. Conclusions The findings from this investigation provide credible scientific support for the traditional use of L. micranthus leaf extract in the treatment of diabetes and its associated complications.

2006 ◽  
Vol 290 (6) ◽  
pp. E1057-E1067 ◽  
Author(s):  
M. Shamsul Ola ◽  
Deborah A. Berkich ◽  
Yuping Xu ◽  
M. Todd King ◽  
Thomas W. Gardner ◽  
...  

This study was conceived in an effort to understand cause and effect relationships between hyperglycemia and diabetic retinopathy. Numerous studies show that hyperglycemia leads to oxidative stress in the diabetic retinas, but the mechanisms that generate oxidative stress have not been resolved. Increased electron pressure on the mitochondrial electron transfer chain, increased generation of cytosolic NADH, and decreases in cellular NADPH have all been cited as possible sources of reactive oxygen species and nitrous oxide. In the present study, excised retinas from control and diabetic rats were exposed to euglycemic and hyperglycemic conditions. Using a microwave irradiation quenching technique to study retinas of diabetic rats in vivo, glucose, glucose-derived metabolites, and NADH oxidation/reduction status were measured. Studying excised retinas in vitro, glycolytic flux, lactate production, and tricarboxylic acid cycle flux were evaluated. Enzymatically assayed glucose 6-phosphate and fructose 6-phosphate were only slightly elevated by hyperglycemia and/or diabetes, but polyols were increased dramatically. Cytosolic NADH-to-NAD ratios were not elevated by hyperglycemia nor by diabetes in vivo or in vitro. Tricarboxylic acid cycle flux was not increased by the diabetic state nor by hyperglycemia. On the other hand, small increases in glycolytic flux were observed with hyperglycemia, but glycolytic flux was always lower in diabetic compared with control animals. An observed decrease in activity of glyceraldehyde-3-phosphate dehydrogenase may be partially responsible for slow glycolytic flux for retinas of diabetic rats. Therefore, it is concluded that glucose metabolism, downstream of hexokinase, is not elevated by hyperglycemia or diabetes. Metabolites upstream of glucose such as the sorbitol pathway (which decreases NADPH) and polyol synthesis are increased.


2020 ◽  
Vol 10 ◽  
Author(s):  
Kalyani Pathak ◽  
Aparoop Das ◽  
Anshul Shakya ◽  
Riya Saikia ◽  
Himangshu Sarma

Background: The leaves of Annona reticulata Linn. have been traditionally used by the tribes of Assam as a source of medicine to mitigate a range of health ailments including diabetes and obesity. Objectives: The current study aimed to evaluate the anti-diabetic and anti-hyperlipidemic potential of bioactive fractions isolated from the methanolic extract of Annona reticulata Linn. leaves using Nicotinamide + Streptozotocin (60 mg/kg, i.p.) induced diabetic rats. Methods: The partially purified bioactive fractions, namely F1, F2, F3 and F4 were administered to diabetic rats with the dose of 200 mg/kg, per oral (p.o.) and the effect of the fractions on serum glucose were studied up to 21 days. The potent fractions were further subjected for spectral analysis for identification of the isolated active compounds. Results: The in-vivo anti-diabetic activity of the isolated fractions F2 and F3 were found significant controlling blood glucose level, alike glibenclamide. Interestingly, F2 and F3 treated animals were found significant in restoring the lipid and liver enzymes profile in streptozotocin challenge rats. Further, spectral analysis revealed that F2 and F3 were comprises Quercetin and Gallic acid, respectively. Conclusion: Outcome of finding demonstrate the anti-diabetic and anti-hyperlipidemic potential of the isolates/fractions of A. reticulata, which were found enriched in polyphenolics including Quercetin and Gallic acid; and provides logistic behind the traditional use of the A. reticulata against Diabetes and obesity.


Drug Research ◽  
2018 ◽  
Author(s):  
Bijan Oskouei ◽  
Soheil Abbaspour-Ravasjani ◽  
Seyed Jamal Musavinejad ◽  
Seyed Ahmad Salehzadeh ◽  
Alireza Abdolhosseinzadeh ◽  
...  

2020 ◽  
Vol 10 (4-s) ◽  
pp. 138-141
Author(s):  
Dalila Bencheikh ◽  
Seddik Khennouf ◽  
Saliha Dahamna

The seeds of Trigonella foenum-graecum (fenugreek) are used for treatment of diabetes mellitus in traditional medicine. This paper examines the protection effects of fenugreek from the damage induced by streptozotocin diabetes rats. Tannins content of T. foenum-graecum was also estimated in vitro. Normoglycemic male Wistar rats, weighing 170-250 g, were selected and randomly divided into five groups (n= 6): normal control, diabetic + TFGE (200mg/kg), diabetic+ TFGE (600mg/kg), diabetic + Glibil (3mg/kg), untreated group. Diabetes was induced after a single intraperitoneal injection of streptozotocin (50 mg/kg body weight) and Fenugreek was given every day via orogastric tube for 18 days. At the end of experiment, rats were sacarificed. Organ weight was estimated of all groups. Trigonella foenum-graecum administration significantly improved the polydipsia, polyphagia, and it also compensated weight loss of diabetic rats (P<0.05, P < 0.01). Moreover, fenugreek had a significant concentration of tannins (806.22 ±0.036 µg TAE/gE). The results revealed that fenugreek improves the damage in diabetic rats that in some ways validates the traditional use of this plant in treatment of diabetes. Keywords: Antidiabetic activity, Protective effect, Streptozotocin, Tannins, Trigonella foenum-graecum


1986 ◽  
Vol 250 (5) ◽  
pp. E530-E537
Author(s):  
R. Rabkin ◽  
G. M. Reaven ◽  
C. E. Mondon

The in vivo metabolism of insulin is a complex process in which liver, kidney, and muscle are major participants. In this study we evaluated the effect of spontaneous hyperglycemic nonketoacidotic diabetes (DH) and ketoacidotic diabetes (DKA) on insulin clearance and degradation by these organs. Livers, hindlimbs, and kidneys from nondiabetic controls and DH and DKA Bio-Breed rats were isolated and perfused with artificial media. Liver clearance of immunoreactive insulin (ml/min) was significantly higher in DH rats, 6.0 +/- 0.2, but significantly lower in DKA rats, 3.4 +/- 0.5, compared with controls, 4.6 +/- 0.2. Acidosis alone induced by ammonium chloride loading, did not impair liver insulin clearance (4.8 +/- 0.4 ml/min). Muscle responded differently to the diabetic state in that insulin clearance was not altered by DH and DKA. Renal (organ) clearance of insulin was significantly depressed in the DKA state when compared with controls (0.52 +/- 0.04 and 0.75 +/- 0.07 ml X min-1 X g-1, respectively). This could largely be explained by a lower glomerular filtration rate. Fractional urinary insulin clearance was increased twofold above control values in DH kidneys and fourfold in DKA kidneys, indicating that tubular luminal absorption of insulin was impaired in both states. By contrast contraluminal uptake (peritubular clearance) did not differ significantly from controls. 125I-insulin degrading activity of the 100,000 g supernate fraction from muscle homogenates was similar in the diabetic and control groups. However in liver and kidney, degrading activity did not correspond to whole organ insulin clearance in a consistent manner.(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
pp. 114-125
Author(s):  
Mohammed A. Sulaiman ◽  
Mahmoud S. Jada ◽  
Augustine Elizabeth ◽  
Abubakar Umar Modibbo

The in vitro antioxidant activity and in vivo hepatocurative and nephrocurative potential of Newbouldia laevis aqueous leaf extract (NLALE) was evaluated. The study used 30 male, albino rats (Rattus norvegicus) weighing 180 ± 20 g, of which 25 were intoxicated by oral administration of a single dose of diclofenac (100 mg/kg b. wt.). Animals were treated by oral administration of silymarin (200 mg/kg b. wt.), furosemide (1.5 mg/kg b. wt.) and NLALE (200 mg/kg and 400 mg/kg b. wt.) for seven consecutive days before animals were sacrificed on the 8th day and serum/plasma was analyzed for biochemical markers of hepatotoxicity and nephrotoxicity. Phytochemical screening of NLALE revealed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids and tannins. The extract scavenged DPPH radical, reduced Fe3+ and inhibited TBARs in comparable manner to ascorbic acid in vitro. NLALE also attenuated diclofenac-induced liver and kidney intoxication as indicated by the significantly (p<0.05) reduced levels of serum biomarkers of hepatotoxicity: ALT, AST, bilirubin, but increased total protein levels and nephrotoxicity: urea, creatinine, Na+ and K+. The observed effects are dose dependent as the 400 mg/kg b. wt. appeared to be more potent than the 200 mg/kg b. wt. dose. It may be concluded from this study that Newbouldia laevis leaf has ameliorative effect against diclofenac-induced hepatotoxicity and nephrotoxicity probably through antioxidative mechanism and the curative claim and the folkloric use of the plant in the treatment of liver and kidney diseases have been scientifically validated


2004 ◽  
Vol 7 (3) ◽  
pp. 366-371
Author(s):  
Kunga Mohan Ramkumar ◽  
Muniappan Latha ◽  
Subramaniam Venkateswaran ◽  
Leelavinothan Pari ◽  
Rajendran Ananthan ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
Kalay Hagazy ◽  
Gereziher G. Sibhat ◽  
Aman Karim ◽  
Gebretsadkan H. Tekulu ◽  
Gomathi Periasamy ◽  
...  

Objective. To evaluate the antimalarial effect of aqueous methanolic extract and solvent fractions of Meriandra dianthera leaves against Plasmodium berghei in mice model. Method. M. dianthera leaves were extracted with 80% methanol and dried. The dried crude extract was then defatted and further fractionated with chloroform, ethyl acetate, and butanol. Acute oral toxicity test was performed as per the Organization for Economic Cooperation and Development guideline 425. Peter’s 4-day suppressive test was used to determine the in vivo antimalarial activity of the extract and fractions. Result. The crude leaf extract of Meriandra dianthera showed parasite inhibition of 42.28% and 45.52% at doses of 400 and 600 mg/kg, respectively, as compared to the negative control. Moreover, the mice which received chloroform and aqueous fractions at the dose of 400 mg/kg/day showed significant (P<0.001) chemosuppression compared to the negative control. Both the extract and fractions were able to prevent P. berghei induced body weight loss and body temperature reduction and also increased the survival time of the mice as compared to the negative control. The aqueous methanolic leaf extract of M. dianthera showed no gross signs of toxicity or mortality in mice until a single oral dose of 2000 mg/kg. Conclusion. The extracts of M. dianthera leaves showed promising antimalarial activity, with no sign of toxicity and therefore may support its traditional use for the treatment of malaria.


Sign in / Sign up

Export Citation Format

Share Document