Behavioral alterations, brain oxidative stress, and elevated levels of corticosterone associated with a pressure injury model in male mice

Author(s):  
Gabriel A. Aquino ◽  
Caren N. S. Sousa ◽  
Ingridy S. Medeiros ◽  
Jamily C. Almeida ◽  
Francisco M. S. Cysne Filho ◽  
...  

Abstract Objectives Sustained stress can cause physiological disruption in crucial systems like the endocrine, autonomic, and central nervous system. In general, skin damages are physical stress present in hospitalized patients. Also, these pressure injuries lead to pathophysiological mechanisms involved in the neurobiology of mood disorders. Here, we aimed to investigate the behavioral alterations, oxidative stress, and corticosterone levels in the brain areas of mice submitted to the model of pressure injury (PI). Methods The male mice behaviors were assessed in the open field test (OFT), elevated plus maze test (EPM), tail suspension test (TST), and sucrose preference test (SPT). Then, we isolated the prefrontal cortex (PFC), hippocampus (HP), and striatum (ST) by brain dissection. The nonprotein sulfhydryl groups (NP-SH) and malondialdehyde (MDA) were measured in the brain, and also the plasma corticosterone levels were verified. Results PI model decreased the locomotor activity of animals (p<0.05). Considering the EPM test, the PI group showed a decrease in the open arm activity (p<0.01), and an increase in the closed arm activity (p<0.05). PI group showed an increment in the immobility time (p<0.001), and reduced sucrose consumption (p<0.0001) compared to the control groups. Regarding the oxidative/nitrosative profile, all brain areas from the PI group exhibited a reduction in the NP-SH levels (p<0.0001–p<0.01), and an increase in the MDA level (p<0.001–p<0.01). Moreover, the PI male mice presented increased levels of plasma corticosterone (p<0.05). Conclusions Our findings suggest that the PI model induces depressive and anxiety-like behaviors. Furthermore, it induces pathophysiological mechanisms like the neurobiology of depression.

2017 ◽  
Vol 39 (2) ◽  
pp. 98-105 ◽  
Author(s):  
Paula Madeira Fortes ◽  
Lucas Albrechet-Souza ◽  
Mailton Vasconcelos ◽  
Bruna Maria Ascoli ◽  
Ana Paula Menegolla ◽  
...  

Abstract Introduction: Agonistic behaviors help to ensure survival, provide advantage in competition, and communicate social status. The resident-intruder paradigm, an animal model based on male intraspecific confrontations, can be an ethologically relevant tool to investigate the neurobiology of aggressive behavior. Objectives: To examine behavioral and neurobiological mechanisms of aggressive behavior in male Swiss mice exposed to repeated confrontations in the resident intruder paradigm. Methods: Behavioral analysis was performed in association with measurements of plasma corticosterone of mice repeatedly exposed to a potential rival nearby, but inaccessible (social instigation), or to 10 sessions of social instigation followed by direct aggressive encounters. Moreover, corticotropin-releasing factor (CRF) and brain-derived neurotrophic factor (BNDF) were measured in the brain of these animals. Control mice were exposed to neither social instigation nor aggressive confrontations. Results: Mice exposed to aggressive confrontations exhibited a similar pattern of species-typical aggressive and non-aggressive behaviors on the first and the last session. Moreover, in contrast to social instigation only, repeated aggressive confrontations promoted an increase in plasma corticosterone. After 10 aggressive confrontation sessions, mice presented a non-significant trend toward reducing hippocampal levels of CRF, which inversely correlated with plasma corticosterone levels. Conversely, repeated sessions of social instigation or aggressive confrontation did not alter BDNF concentrations at the prefrontal cortex and hippocampus. Conclusion: Exposure to repeated episodes of aggressive encounters did not promote habituation over time. Additionally, CRF seems to be involved in physiological responses to social stressors.


2021 ◽  
Vol 3 ◽  
Author(s):  
Igor Ferraz da Silva ◽  
Eduardo Merlo ◽  
Charles S. Costa ◽  
Jones B. Graceli ◽  
Lívia C. M. Rodrigues

Tributyltin (TBT) is a persistent organometallic pollutant widely used in several agricultural and industrial processes. TBT exposure is associated with various metabolic, reproductive, immune, and cardiovascular abnormalities. However, few studies have evaluated the effects of TBT on behavior. In the present study, we aimed to investigate whether TBT exposure results in oxidative, neuroendocrine, and behavioral alterations. TBT was administered to adult female mice (250, 500, or 750 ng/kg/day or veh for 14 days), and their recognition memory was assessed. We have also evaluated estrogen receptor (ER)α protein expression and oxidative stress (OS) in brain areas related to memory, as well as the correlation between them. A reduction in short- and long-term recognition memory (STM and LTM) performance, as well as in total exploration time was observed in TBT mice. Reduced ERα protein expression was observed in the prefrontal cortex (PFC) and hippocampus of TBT mice, while an increase in TBARS concentration was observed in the PFC of treated animals. Collectively, these data suggest that TBT exposure impairs recognition memory in female mice as a result of, at least in part, its toxicological effects on ERα expression and OS in specific brain areas related to memory.


Author(s):  
Yeshwant Kurhe ◽  
Radhakrishnan Mahesh ◽  
Deepali Gupta ◽  
Devadoss Thangaraj

AbstractThe inconsistent therapeutic outcome necessitates designing and identifying novel therapeutic interventions for depression. Hence, the present study deals with the investigation of antidepressant-like effects of a novel 5-HTAnimals were subjected to different stressors for a period of 28 days. On day 15 after the subsequent stress procedure, mice were administered with (4a) (2 and 4 mg/kg p.o.), escitalopram (10 mg/kg p.o.), or vehicle (10 mL/kg p.o.) until day 28 along with the CUMS. Thereafter, behavioral battery tests like locomotor score, sucrose preference test, forced swim test (FST), tail suspension test (TST), and elevated plus maze (EPM) were performed. Biochemical assays like lipid peroxidation, nitrite levels, reduced glutathione (GSH), catalase, and superoxide dismutase (SOD) were estimated in the mice brain homogenate.(4a) Dose dependently attenuated the behavioral alterations by increasing the sucrose consumption, reducing the immobility time in FST and TST, increasing the open arm number of entries and time in EPM. Furthermore, biochemical alterations were reversed by (4a) as examined by reduced lipid peroxidation and nitrite levels and elevated antioxidant enzyme levels like GSH, catalase and SOD.(4a) exhibits antidepressant potential by reversing the CUMS induced behavioral and biochemical changes in mice.


Author(s):  
DINESH DHINGRA ◽  
SUDHA

Objectives: The present study was undertaken to investigate the antidepressant potential of trans-anethole in unstressed and stressed male mice. Methods: Swiss albino male mice were exposed to chronic unpredictable mild stress for 21 successive days. Simultaneously, trans-anethole (12.5 mg/kg, 25 mg/kg, and 50 mg/kg) and fluoxetine (20 mg/kg) per se were administered for 21 successive days to separate groups of unstressed and stressed mice. The effect of drugs on depressive-like behavior of mice was tested by tail suspension test (TST) and sucrose preference test. Results: Trans-anethole (25 mg/kg) and fluoxetine significantly decreased the immobility period of unstressed and stressed mice in TST as compared to their respective control. These drugs significantly restored the reduced sucrose preference (%) in stressed mice. Trans-anethole did not show any significant effect on locomotor activity of mice. Antidepressant-like activity of trans-anethole (25 mg/kg) was found to be comparable to fluoxetine. Trans-anethole and fluoxetine significantly inhibited brain monoamine oxidase-A (MAO-A) activity, decreased plasma nitrite, brain malondialdehyde, and increased brain reduced glutathione levels and catalase activity in unstressed and stressed mice. The drugs significantly reversed stress-induced increase in plasma corticosterone levels. Conclusion: Trans-anethole produced significant antidepressant-like activity in unstressed and stressed mice, possibly through inhibition of brain MAO-A activity and alleviation of oxidative stress. Reversal of stress-induced increase in plasma corticosterone levels might also be responsible for antidepressant-like activity of trans-anethole in stressed mice.


2019 ◽  
Vol 16 (4) ◽  
pp. 358-364 ◽  
Author(s):  
Simone H. Schelder-Marzzani ◽  
Paula Dias ◽  
Viviane Freiberger ◽  
Letícia Ventura ◽  
Bruna B. Silva ◽  
...  

Background: Studies have shown the relationship between neuroinflammation and depressive- like parameters. However, research still has not been carried out to evaluate neuroinflammation in the neonatal period and psychiatric disorders in adulthood. Objective: To verify the association between neonatal immune activation and depressive-like parameters in adulthood using an animal model. Methods: Two days old C57BL/6 animals were exposed to lipopolysaccharides (LPS) or phosphate- buffered saline (PBS). When the animals were 46 days old, they received PBS or Imipramine at 14 days. At 60 days, the consumption of sucrose; immobility time; adrenal gland and the hippocampus weight; levels of plasma corticosterone and hippocampal Brain-derived neurotrophic factor (BDNF) were evaluated. Results: It was observed that the animals exposed to LPS in the neonatal period and evaluated in adulthood decreased the consumption of sucrose and had reducted hippocampus weight. Also, the exposed animals presented an increase of immobility time, adrenal gland weight and plasma levels of corticosteroids. The use of imipramine did not only modify the decreased hippocampal weight. On the other hand, there were no alterations in the BDNF levels in the hippocampus with or without the use of imipramine. Conclusion: These results suggest that neonatal immune activation may be associated with depressive- like parameters in adulthood. It is believed that endotoxemia may trigger physiological and behavioral alterations, increasing vulnerability for the development of depression in adulthood.


Author(s):  
Proteesh Rana ◽  
Harish Bagewadi ◽  
B.D. Banerjee ◽  
S.K. Bhattacharya ◽  
Pramod Kumari Mediratta

AbstractBackgroundThe emerging line of research suggests that neuro-inflammation and oxidative stress are linked to the development of depression-like behavior. The tryptophan metabolizing enzyme, indolamine 2,3-dioxygenase (IDO), serves as an important interface between chronic inflammation and depression. IDO is induced by pro-inflammatory cytokines and diverts tryptophan towards the kynurenine pathway, decreasing serotonin synthesis. Further, the metabolites of kynurenine pathway increase brain oxidative stress and also cause N-methyl-D-aspartate (NMDA) receptor-mediated exitotoxicity. The resulting oxidative damage and dysfunction in glutamatergic neurotransmission alters the network connectivity of the brain, which may be the further mechanism for emergence of depression-like symptoms.MethodsA depression-like illness was induced in mice by injecting Bacillus Calmette-Guerin (BCG) suspended in isotonic saline at a dose of 107 CFU I.P. The mice were then divided into different groups and were administered MK-801 or normal saline for the next 21 days, after which a battery of behavior and biochemical tests were conducted to assess them.ResultsThe BCG group had significantly reduced sucrose preference index and an increase in immobility time in forced swim test (FST) and Tail Suspension Test (TST) as compared to the saline group. There was also a significant increase in the brain MDA levels and a decline in the brain GSH levels. The hippocampal tissue from the BCG group had significantly more comet cells than the saline group. The NMDA receptor antagonist, MK-801, was able to reverse the BCG-induced depression-like behaviour. MK-801 also showed significant decrease in brain oxidative stress but failed to show significant protection against BCG-induced neurotoxicity observed in comet assay.ConclusionsThe NMDA receptor antagonist, MK-801, mitigated BCG-induced, depressive-like behavior in mice by improving the sucrose preference and decreasing the duration of immobility time in TST and FST. The overall improvement in depression-like behavior was accompanied by a reduction in brain oxidative stress and comet cells, thus suggesting the antioxidant and neuroprotective action of MK-801.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 898 ◽  
Author(s):  
Enrico Gugliandolo ◽  
Alessio Filippo Peritore ◽  
Ramona D’Amico ◽  
Patrizia Licata ◽  
Rosalia Crupi

Aflatoxin B1 (AFB1) is a mycotoxin commonly present in feed, characterized by several toxic effects. AFB1 seems to have a neurotoxical effect that leads to memory impairment behavior. AFB1 toxicity involves the induction of the oxidative stress pathway, rising lipid peroxidation, and it decreases antioxidant enzyme levels. Hence, in our research, we wanted to evaluate the potential protective effects of quercetin 30 mg/kg in AFB1-mediated toxicity in the brain and the ameliorative effect on behavioral alterations. Oral supplementation with quercetin increased glutathione peroxidase (GSH) levels, superoxidedismutase (SOD) activity and catalase (CAT) in the brain, and it reduced lipid peroxidation in AFB1-treated mice. This antioxidant effect of quercetin in the brains of AFB1-intoxicated mice is reflected in better cognitive and spatial memory capacity, as well as a better profile of anxiety and lethargy disorders. In conclusion, our study suggests that quercetin exerts a preventive role against oxidative stress by promoting antioxidative defense systems and limiting lipid peroxidation.


2021 ◽  
Vol 5 (1) ◽  
pp. 79-86
Author(s):  
Ingar Olsen

Iron accumulates in the brain of subjects with Alzheimer’s disease (AD). Here it promotes the aggregation of amyloid-β plaques in which it is abundant. Iron induces amyloid-β neurotoxicity by damaging free radicals and causing oxidative stress in brain areas with neurodegeneration. It can also bind to tau in AD and enhance the toxicity of tau through co-localization with neurofibrillary tangles and induce accumulation of these tangles. Porphyromonas gingivalis is a key oral pathogen in the widespread biofilm-induced disease “chronic” periodontitis, and recently, has been suggested to have an important role in the pathogenesis of AD. P. gingivalis has an obligate requirement for iron. The current paper suggests that P. gingivalis seeks the AD brain, where it has been identified, to satisfy this need. If this is correct, iron chelators binding iron could have beneficial effects in the treatment of AD. Indeed, studies from both animal AD models and humans with AD have indicated that iron chelators, e.g., lactoferrin, can have such effects. Lactoferrin can also inhibit P. gingivalis growth and proteinases and its ability to form biofilm.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ying Yin ◽  
Shiyu Qian ◽  
Yifan Chen ◽  
Yan Sun ◽  
Yuqiao Li ◽  
...  

Previous studies have demonstrated that Yueju-Ganmaidazao (YG) decoction induces rapid antidepressant-like effects, and the antidepressant response is mostly dependent on the suppression of nitric oxide-cyclic guanosine monophosphate signaling in male mice. This study aimed to investigate the sex difference mediated by calcium/calmodulin-dependent protein kinase II (CaMKII)-neuronal nitric oxide synthase (nNOS) signaling involved in the antidepressant-like effect of YG in mice. We found that the immobility times in the tail suspension test (TST) were found to be decreased after the single injection of YG in male and female mice with the same dosage. Additionally, chronic administration for 4 days of subthreshold dosage of YG and escitalopram (ES) also significantly decreased the immobility time in mice of both sexes. Chronic subthreshold dosage of YG and ES in LPS-treated mice and in chronic unpredictable stress (CUS) mice both decreased the immobility time, which was increased by stress. Meanwhile, in CUS-treated mice, sucrose preference test, forced swimming test, and open field test were applied to further confirm the antidepressant-like effects of YG and ES. Moreover, CUS significantly decreased the expression of nNOS and CaMKII, and both YG and ES could enhance the expression in the hippocampus of female mice, which was opposite to that in male mice, while endothelial nitric oxide synthase expression was not affected by stress or drug treatment neither in male mice nor in female mice. Finally, subthreshold dosage of YG combined with 7-nitroindazole (nNOS inhibitor) induced the antidepressant-like effects both in female and in male mice, while the single use of YG or 7-NI did not display any effect. However, pretreatment with KN-93 (CaMKII inhibitor) only blocked the antidepressant-like effect of high-dosage YG in female mice. Meanwhile, in CUS mice, chronic stress caused NR1 overexpression and inhibited cAMP response element binding protein action, which were both reversed by YG and ES in male and female mice, implying that YG and ES produced the same antidepressant-like effect in mice of both sexes. The study revealed that chronic treatment with a subthreshold dose of YG also produced antidepressant-like effects in female mice, and these effects depended on the regulation of the CaMKII-nNOS signaling pathway.


2020 ◽  
Vol 16 (9) ◽  
pp. 1319-1327
Author(s):  
Ferdous Khan ◽  
Syed A. Kuddus ◽  
Md. H. Shohag ◽  
Hasan M. Reza ◽  
Murad Hossain

Background: An imbalance between pro-oxidants and antioxidants determines the level of oxidative stress which is implicated in the etiopathogenesis of various neuropsychiatric disorders including depression. Therefore, treatment with antioxidants could potentially improve the balance between pro-oxidants and antioxidants. Objective: The objective of this study was to evaluate the ability of astaxanthin, a potential antioxidant, to reduce reserpine-induced depression in BALB/c mice (Mus musculus). Methods: On the behavioral level, antidepressant property of astaxanthin (50 mg/kg, orally) on reserpine (2 mg/kg, subcutaneously) induced depressed mice was evaluated by Forced Swim Test (FST) and Tail Suspension Test (TST). In the biochemical level, the ability of astaxanthin to mitigate reserpine-induced oxidative stress was evaluated by the measurement of Malondialdehyde (MDA) and nitric oxide (NO) in brain, liver and plasma samples. On the other hand, the efficiency of astaxanthin to replenish glutathione depletion and antioxidant enzyme activity augmentation in the same samples were also investigated. Results: Astaxanthin was able to lower reserpine induced immobility time significantly (p<0.05) in FST and TST. Mice treated with astaxanthin showed significantly (p<0.05) low level of oxidative stress markers such as Malondialdehyde (MDA), Nitric Oxide (NO). Consistently, the level of reduced Glutathione (GSH), and the activity of Superoxide Dismutase (SOD) and catalase were augmented due to the oral administration of astaxanthin. Conclusion: This study suggests that astaxanthin reduces reserpine-induced oxidative stress and therefore might be effective in treating oxidative stress associated depression.


Sign in / Sign up

Export Citation Format

Share Document