scholarly journals Examples of numerical simulations of two-dimensional unsaturated flow with VS2DI code using different interblock conductivity averaging schemes

Geologos ◽  
2015 ◽  
Vol 21 (3) ◽  
pp. 161-167 ◽  
Author(s):  
Adam Szymkiewicz ◽  
Witold Tisler ◽  
Kazimierz Burzyński

AbstractFlow in unsaturated porous media is commonly described by the Richards equation. This equation is strongly nonlinear due to interrelationships between water pressure head (negative in unsaturated conditions), water content and hydraulic conductivity. The accuracy of numerical solution of the Richards equation often depends on the method used to estimate average hydraulic conductivity between neighbouring nodes or cells of the numerical grid. The present paper discusses application of the computer simulation code VS2DI to three test problems concerning infiltration into an initially dry medium, using various methods for inter-cell conductivity calculation (arithmetic mean, geometric mean and upstream weighting). It is shown that the influence of the averaging method can be very large for coarse grid, but that it diminishes as cell size decreases. Overall, the arithmetic average produced the most reliable results for coarse grids. Moreover, the difference between results obtained with various methods is a convenient indicator of the adequacy of grid refinement.

1992 ◽  
Vol 23 (3) ◽  
pp. 193-208 ◽  
Author(s):  
Roger B. Herbert

This study presents a method for evaluating the effectiveness of a mine tailing cover. The cover is designed with a 0.5 m layer of clay covered by a 1.5 m layer of glacial till; full water saturation of the clay layer is assumed to be necessary for the maximal reduction of oxygen transport through the cover. The evaluation of cover effectiveness is based on: 1) the reduction of leachate production, and 2) the ability of the clay layer to remain water saturated and avoid cracking. Using 1990 precipitation data, the numerical model SUTRA simulates unsaturated flow in the cover, with results interpreted in terms of pressure head variations and vertical discharge from the cover. The modeling results indicate that this cover design would adequately reduce leachate production from a tailing deposit. In addition, the water saturation of the clay layer remains above its plastic limit during a simulated year of normal recharge conditions; it is therefore not likely that the clay layer would crack. A sensitivity analysis with different hydraulic parameter values is performed, and shows that leachate production is most sensitive to clay hydraulic conductivity, while the water saturation of the clay layer is sensitive to both clay hydraulic conductivity and till porosity.


HortScience ◽  
2010 ◽  
Vol 45 (7) ◽  
pp. 1106-1112 ◽  
Author(s):  
Paraskevi A. Londra

For effective irrigation and fertilization management, the knowledge of substrate hydraulic properties is essential. In this study, a steady-state laboratory method was used to determine simultaneously the water retention curve, θ(h), and unsaturated hydraulic conductivity as a function of volumetric water content, K(θ), and water pressure head, K(h), of five substrates used widely in horticulture. The substrates examined were pure peat, 75/25 peat/perlite, 50/50 peat/perlite, 50/50 coir/perlite, and pure perlite. The experimental retention curve results showed that in the case of peat and its mixtures with perlite, there is a hysteresis between drying and wetting branches of the retention curve. Whereas in the case of coir/perlite and perlite, the phenomenon of hysteresis was less pronounced. The increase of perlite proportion in the peat/perlite mixtures led to a decrease of total porosity and water-holding capacity and an increase of air space. Study of the K(θ) and K(h) experimental data showed that the hysteresis phenomenon of K(θ) was negligible compared with the K(h) data for all substrates examined. Within a narrow range of water pressure head (0 to –70 cm H2O) that occurs between two successive irrigations, a sharp decrease of the unsaturated hydraulic conductivity was observed. The comparison of the K(θ) experimental data between the peat-based substrate mixtures and the coir-based substrate mixture showed that for water contents lower than 0.40 m3·m−3, the hydraulic conductivity of the 50/50 coir/perlite mixture was greater. The comparison between experimental water retention curves and predictions using Brooks-Corey and van Genuchten models showed a high correlation (0.992 ≤ R2 ≤ 1) for both models for all substrates examined. On the other hand, in the case of unsaturated hydraulic conductivity, the comparison showed a relatively good correlation (0.951 ≤ R2 ≤ 0.981) for the van Genuchten-Mualem model for all substrates used except perlite and a significant deviation (0.436 ≤ R2 ≤ 0.872) for the Brooks-Corey model for all substrates used.


2009 ◽  
Vol 13 (10) ◽  
pp. 1993-2002 ◽  
Author(s):  
F. Rezanezhad ◽  
W. L. Quinton ◽  
J. S. Price ◽  
D. Elrick ◽  
T. R. Elliot ◽  
...  

Abstract. The hydraulic conductivity of unsaturated peat soil is controlled by the air-filled porosity, pore size and geometric distribution as well as other physical properties of peat materials. This study investigates how the size and shape of pores affects the flow of water through peat soils. In this study we used X-ray Computed Tomography (CT), at 45 μm resolution under 5 specific soil-water pressure head levels to provide 3-D, high-resolution images that were used to detect the inner pore structure of peat samples under a changing water regime. Pore structure and configuration were found to be irregular, which affected the rate of water transmission through peat soils. The 3-D analysis suggested that pore distribution is dominated by a single large pore-space. At low pressure head, this single large air-filled pore imparted a more effective flowpath compared to smaller pores. Smaller pores were disconnected and the flowpath was more tortuous than in the single large air-filled pore, and their contribution to flow was negligible when the single large pore was active. We quantify the pore structure of peat soil that affects the hydraulic conductivity in the unsaturated condition, and demonstrate the validity of our estimation of peat unsaturated hydraulic conductivity by making a comparison with a standard permeameter-based method. Estimates of unsaturated hydraulic conductivities were made for the purpose of testing the sensitivity of pore shape and geometry parameters on the hydraulic properties of peats and how to evaluate the structure of the peat and its affects on parameterization. We also studied the ability to quantify these factors for different soil moisture contents in order to define how the factors controlling the shape coefficient vary with changes in soil water pressure head. The relation between measured and estimated unsaturated hydraulic conductivity at various heads shows that rapid initial drainage, that changes the air-filled pore properties, creates a sharp decline in hydraulic conductivity. This is because the large pores readily lose water, the peat rapidly becomes less conductive and the flow path among pores, more tortuous.


2021 ◽  
Author(s):  
Manyu Wang ◽  
Yong Liu ◽  
Lu Yang ◽  
Jing Wu ◽  
Guilin Niu

In recent years, more considerable attentions are paying on the hazards of large-scale landslides induced by heavy rainfall. However, the heterogeneity in hydraulic properties of soils may affect the seepage pattern of water infiltrated into soil slopes. Inspired by this fact, this paper aimed to evaluate the effect of the spatial variability in hydraulic conductivity on failure mechanism of an unsaturated soil slope subjected to rainfall infiltration, being implemented in the framework of a transient coupled hydro-mechanical analysis. The concept of random field was adopted to model the spatial randomness of saturated hydraulic conductivity ks following a uniform distribution. The finite element method was then incorporated to conduct Monte Carlo simulations. The resultant findings show that the mode of shallow slope failure is more likely to occur than the deep one due mainly to the highly variable distribution of ks near slope surface. Note that the decrease in the effective stress of soils resulting from the increase of pore water pressure is the most critical reason for the occurrence of slope failure. In addition, from the random element analyses results, it indicates that the value of Qari calculated by performing a deterministic analysis based on arithmetic average value kari gives a prediction of flow rate on average, but the calculated Qmax based on maximum value kmax provides a more conservative assessment on total flow rate across soil slope, which can offer useful suggestions for practitioners to take available measures to drain in advance.


Author(s):  
Chih-Yu Liu ◽  
Cheng-Yu Ku ◽  
Chi-Chao Huang ◽  
Der-Guey Lin ◽  
Wei-Chung Yeih

AbstractIn this paper, the numerical solutions for groundwater flow in unsaturated layered soil using the Richards equation are presented. A linearisation process for the nonlinear Richards equation to deal with groundwater flow in unsaturated layered soil is derived. To solve one-dimensional flow in the unsaturated zone of layered soil profiles, flux conservation and the continuity of pressure potential at the interface between two consecutive layers are considered in the numerical model. In addition, a novel method, named the dynamical Jacobian-inverse free method, incorporated with a two-side equilibration algorithm for solving ill-conditioned systems with extreme contrasts in hydraulic conductivity is proposed. The validity of the model is established in numerous test problems by comparing the numerical results with the analytical solutions. The results show that the proposed method can improve convergence and numerical stability for solving groundwater flow in unsaturated layered soil with extreme contrasts in hydraulic conductivity.


2020 ◽  
Author(s):  
Pierre-Emmanuel Peyneau ◽  
Laurent Lassabatere ◽  
Joseph Pollacco ◽  
Jesús Fernández-Gálvez ◽  
Borja Latorre ◽  
...  

<p>Soil sorptivity is one of the key hydraulic parameters for modelling water infiltration into soil. It quantifies the capacity of a soil to infiltrate water by capillarity. Several formulations, based on various models, have been proposed to compute it from the water retention and the unsaturated hydraulic conductivity functions. All these formulations use the integration of the product of either the hydraulic conductivity or diffusivity function with the flux concentration function. The integration can be performed either over an interval of water pressure head or water content, yielding two equal values. However, the expression of the integral as a function of water pressure head may involve a huge or even infinite interval, which can be numerically difficult to handle. In opposite, the expression of the integral as a function of water content involves the integration of a diverging function (diffusivity) over a large interval, which is also troublesome from a numerical point of view. In this paper, we provide a new expression for sorptivity by cutting the integral in two parts, in order to involve only the integration of a finite function over a finite interval. The dependency of the integral on the flux concentration function is also investigated.</p>


1998 ◽  
Vol 18 ◽  
Author(s):  
Golam Shabbir Sattar

A modification of the CSIRO type tension infiltrometer was designed (designated UNCEL type) and tested. This infiltrometer is considerably cheaper, but more versatile, than any other infiltrometer reported so far. The modified infiltrometer was used in a reconstructed vadose zone to measure the unsaturated hydraulic conductivity and effect of compaction associated with the upper vadose zone. Hydraulic conductivity, a function of matric potential, is a fundamental property for water entry into the soil as well as in the upper vadose zone. Tension infiltrometer technique for determining unsaturated hydraulic conductivity, which is also a function of soil water pressure head, was compared with the existing techniques. The analysis of data from tension infiltrometer is based mainly on flow rate at steady-state condition. The steady-state measurement also enables to determine unknown parameters on the basis of at least two negative heads at the same location. This modified infiltrometer imposes pressure potentials at soil surface from 0.01 to 0.15 m of water, as a result macropores with an air entry value of less than applied tension are excluded. This is practically useful when investigating the influence of structure and compaction of upper vadose zone. Measurement of infiltration at various negative pressure head, with a single disc diameter allowed sensitive measurement of hydraulic properties of upper vadose zone with minimal surface disturbance. The newly designed tension infiltrometer and adopted schemes of calculation enable to determine unsaturated hydraulic conductivity of upper vadose zone with relevance to structural effects more accurately.


2021 ◽  
Author(s):  
Robert Mietrach ◽  
Thomas Wöhling ◽  
Niels Schütze

<p>The classical formulation of Richards' equation is relying on a unique functional relationship between water content, conductivity and pressure head. Some phenomena like hystersis effects in the water content during wetting and drying cycles and hydraulic non-equillibrium cannot be accounted for with this formulation. Therefor it has been extended in different ways in the past to be able to include these effects in the simulation. Each modification comes with its own challenges regarding implementation and numerical stability.<br>The Method Of Lines approach to solving the Richards' equation has already be shown to be an efficient and stable alternative to established solution methods, such as low-order finite difference and finite element methods applied to the mixed form of Richards' equation.<br>In this work a slightly modified Method Of Lines approach is used to solve the pressure based 1D Richards' equation. A finite differencing scheme is applied to the spatial derivative and the resulting system of ordinary differential equations is reformulated as differential-algebraic system of equations. The open-source code IDAS from the Sundials suite is used to solve the DAE system. Different extensions to Richards' equation have been incorporated into the model to address the shortcomings mentioned above. These extensions are a model able to simulate preferential flow using a coupled two domain approach, a simple hysteretic model to account for hysteresis in the water retention curve and also two models to either fully or partially calculate hydraulic non-equillibrium effects. To verify the numerical robustness of the extended model, stochastic parameterizations were generated that represent the full range of all soil types. Simulations were carried out using these parameter sets and real-world meteorological boundary conditions at 10 minutes time intervals, that exhibit drastic flux changes and poses numerical challenges for classical solution methods.</p><p>The results show that not only does the extended model converge for all parameterizations, but that numerical robustness and performance is maintained. Where applicable the results have been verified against solutions from the software Hydrus and show good agreement with those.</p>


2009 ◽  
Vol 6 (3) ◽  
pp. 3835-3862 ◽  
Author(s):  
F. Rezanezhad ◽  
W. L. Quinton ◽  
J. S. Price ◽  
D. Elrick ◽  
T. R. Elliot ◽  
...  

Abstract. The hydraulic conductivity of unsaturated peat soils is controlled by the peat structure which affects the air-filled porosity, pore size distribution and shape. This study investigates how the size and shape of pores affects the flow of water through peat soils. In this study we used X-ray Computed Tomography (CT), at 45 µm resolution under 5 specific soil-water pressure head levels to provide 3-D, high-resolution images that were used to detect the inner pore structure of peat samples under a changing water regime. Pore structure and configuration were found to be irregular, which affected the rate of water transmission through peat soils. The 3-D analysis suggested that pore distribution is dominated by a single large pore-space. At low pressure head, this single large air-filled pore imparted a more effective flowpath compared to smaller pores. Smaller pores were disconnected and the flowpath was more tortuous than in the single large air-filled pore, and their contribution to flow was negligible when the single large pore was active. We quantify the pore structure of peat soil that affects the hydraulic conductivity in the unsaturated condition, and demonstrate the validity of our estimation of peat unsaturated hydraulic conductivity by making a comparison with a standard permeameter-based method. Estimates of unsaturated hydraulic conductivities were made for the purpose of testing the sensitivity of pore shape and geometry parameters on the hydraulic properties of peats and how to evaluate the structure of the peat and its affects on parameterization. We also studied the ability to quantify these factors for different soil moisture contents in order to define how the factors controlling the shape coefficient vary with changes in soil water pressure head. The relation between measured and estimated unsaturated hydraulic conductivity at various heads shows that rapid initial drainage, that changes the air-filled pore properties, creates a sharp decline in hydraulic conductivity. This is because the large pores readily lose water, the peat rapidly becomes less conductive and the flow path among pores, more tortuous.


2021 ◽  
Author(s):  
Andrew Mair ◽  
Lionel Xavier Dupuy ◽  
Mariya Ptashnyk

There is strong experimental evidence that root systems substantially change the saturated hydraulic conductivity of soil. However, the mechanisms by which roots affect soil hydraulic properties remain largely unknown. In this work, we made the hypothesis that preferential soil moisture transport occurs along the axes of roots, and that this is what changes a soil's saturated hydraulic conductivity. We modified Richards' equation to incorporate the preferential flow of soil moisture along the axes of roots. Using the finite element method and Bayesian optimisation, we developed a pipeline to calibrate our model with respect to a given root system. When applied to simulated root systems, the pipeline successfully predicted the pore-water pressure profiles corresponding to saturated hydraulic conductivity values, observed by Leung et al. (2018), for soils vegetated by willow and grass. Prediction accuracy improved for root systems with more realistic architectures, therefore suggesting that changes in saturated hydraulic conductivity are a result of roots enabling preferential soil moisture transport along their axes. The model proposed in this work improves our ability to predict moisture transport through vegetated soil and could help optimise irrigation, forecast flood events and plan landslide prevention strategies.


Sign in / Sign up

Export Citation Format

Share Document