scholarly journals Impact of processing parameters on the LTCC channels geometry

2015 ◽  
Vol 33 (4) ◽  
pp. 816-825 ◽  
Author(s):  
Jan Macioszczyk ◽  
Karol Malecha ◽  
Andrzej Stafiniak ◽  
Leszek J. Golonka

AbstractA great advantage of Low Temperature Co-fired Ceramics (LTCC) yields the possibility of channel and air cavity fabrication. Such empty spaces have numerous applications, for example, in microfluidics, microwave techniques and integrated packaging. However, improper geometry of these structures can degrade the performance of the final device. The processing parameters recommended by the LTCC tape supplier are relevant for the production of multilayer circuits but not surface embedded channels and/or cavities. Thus, it is important to examine which factors of the fabrication process are the most significant. In our study, special attention has been paid to the geometric performance of the channel structure resulting from the applied processing parameters. Laser cutting parameters were checked to obtain the structures with great fidelity. The impact of an isostatic lamination on the quality of the final structure was analyzed. The influence of pressure and temperature of the lamination process on the channel geometry and tape shrinkage were examined. The performed experiments showed that some improvements in channel/cavity geometry may be achieved by optimizing the processing procedures. The microscopic observations combined with the Analysis of Variance (ANOVA) showed which combinations of the processing parameters are the best for achieving a channel/cavity structure with the desired geometry.

2012 ◽  
Vol 182-183 ◽  
pp. 422-426 ◽  
Author(s):  
Hui Juan Hao ◽  
Guang He Cheng ◽  
Ji Yong Xu

In this paper, the pulse-induced acoustic sound in laser cutting is collected, and the data processing is performed with wavelet denoising and time-frequncy analyzing. The impact of laser processing parameters on the acoustic signal is discussed; and further analysis of the effect of cutting speed is conducted. The corresponding relationship between the best velocity and the maximum time-frequency energy density is got; also the plan of adaptive control in laser cutting is designed. The results in this paper can provide important parameters for adaptive control of laser cutting.


2011 ◽  
Vol 299-300 ◽  
pp. 1016-1019
Author(s):  
Tie Jun Li ◽  
Jing Tang ◽  
Li Jun Yan ◽  
Yang Wang

This paper presented the experiments of Nd:YAG pulsed laser cutting of titanium alloy, super-alloy and stainless steel sheet, and investigated the influences of different laser cutting parameters on the surface quality factors focusing surface morphology. In comparison with air-, argon- and nitrogen-assisted laser cutting, argon-assisted laser cutting comes with unaffected surface quality and is suitable for laser cutting with subsequent welding requirement. With analyzing the interaction between pulses overlapping rate and energy, the results show that medium pulse overlapping rate and lower pulse rate helps to improve the surface roughness with pulsed laser cutting. And the results would be beneficial to find optimum cutting parameters for good separation surface.


2013 ◽  
Vol 7 (1) ◽  
pp. 15-19 ◽  
Author(s):  
Radovan Hudák ◽  
Martin Šarik ◽  
Róbert Dadej ◽  
Jozef Živčák ◽  
Daniela Harachová

Abstract Thermal analysis of laser processes can be used to predict thermal stresses and consequently deformation in a completed part. Analysis of temperature is also the basic for feedback of laser processing parameters in manufacturing. The quality of laser sintered parts greatly depends on proper selection of the input processing parameters, material properties and support creation. In order to relatively big heat stress in the built part during sintering process, the thermal simulation and thermal analysis, which could help better understand and solve the issue of parts deformations is very important. Main aim of presented work is to prepare input parameters for thermal simulations by the use of RadTherm software (Thermoanalytics Inc., USA), directly during the sintering process and after the process and find out the impact of the heat stress on a final shape and size of the prototype. Subsequently, an annealing process of constructed products after DMLS could be simulated and specified.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3429 ◽  
Author(s):  
Agnieszka Skoczylas ◽  
Kazimierz Zaleski

In this article, we report the results of experimental studies on the impact of ball burnishing parameters on the roughness, microstructure and microhardness of the surface layer of laser-cut C45 steel parts. We also analysed the distribution of residual stresses generated in the surface layer of these parts. Laser-cut parts often require finishing to improve the quality of their surface. The tests performed in this study were aimed at assessing whether ball burnishing could be used as a finishing operation for parts of this type. Ball burnishing tests were performed on an FV-580a vertical machining centre using a mechanically controlled burnishing tool. The following parameters were varied during the ball burnishing tests: burnishing force Fn, path interval fw and the diameter of the burnishing ball dn. Ball burnishing of laser-cut C45 steel parts reduced the surface roughness parameters Sa and Sz by up to 60% in relation to the values obtained after laser cutting. Finish machining also led to the reorganization of the geometric structure of the surface, resulting in an increase in the absolute value of skewness Ssk. This was accompanied by an increment in microhardness (maximum microhardness increment was ΔHV = 95 HV0.05, and the thickness of the hardened layer was gh = 40 µm) and formation of compressive residual stresses in the surface layer.


2012 ◽  
Vol 729 ◽  
pp. 460-463
Author(s):  
Péter Nagy ◽  
János Dobránszky

In this article the complex research and development project of the laser cutting micromachining of nitinol alloys are shown. The laser cutting parameters of the 1.04 mm inner diameter and 0.1 mm wall thickness nitinol tubes are also shown. The laser cutting parameters of micromachining and the cut surface of nitinol tubes are summarized when 3 mJ pulse energy, 0.02 ms pulse duration, 6 bar Ar gas pressure, 3000 Hz frequency, 10 mm/s rotation speed and 5 mm/s2 speed-up were used. The effect of the laser cutting to the raw material is characterized by microstructural and micromechanical examinations. A detailed description is given of the energy input by laser beam machining. The pulse and the impact of the applied pressure parameters of the gas to the raw material are also shown.


2006 ◽  
Vol 505-507 ◽  
pp. 847-852 ◽  
Author(s):  
Xu Yue Wang ◽  
Wen Ji Xu ◽  
Ren Ke Kang ◽  
Yi De Liang

An experimental analysis is presented which investigates the relationship between cutting parameters and the volume of material removal as well as its cutting quality on a Nd:YAG laser cutting system. The parameters that varied on two testing thickness during cutting include cutting speed, incident laser power and focal position in a continuous through cut. Various trends of the kerf geometrical features in terms of the varying process parameters are analyzed and shown to be reasonable. Discussions are also given on kerf geometry control in situations with cutting parameters. It shows that the effects of varying parameters such as cutting speed, laser power and focal position on cutting kerf width, surface roughness, and striation that have provided a deeper understanding of the laser machining.


2015 ◽  
Vol 760 ◽  
pp. 475-481
Author(s):  
Cristina Biris ◽  
Octavian Bologa ◽  
Claudia Girjob ◽  
Sever Gabriel Racz

This paper presents the study of the influence of cutting parameters on surface quality in laser cutting of metallic materials. In this paper, it is shown which of the cutting parameters have the greatest influence on the quality of the processed surfaces by measuring various roughness parameters. After the experimental research was carried out a ranking of the factors of influence on the response functions was made, also graphs of dependency to various parameters of roughness were made.


2020 ◽  
Vol 10 (4) ◽  
pp. 6062-6067
Author(s):  
A. Boudjemline ◽  
M. Boujelbene ◽  
E. Bayraktar

This paper investigates high power CO2 laser cutting of 5mm-thick Ti-6Al-4V titanium alloy sheets, aiming to evaluate the effects of various laser cutting parameters on surface roughness. Using multiple linear regression, a mathematical model based on experimental data was proposed to predict the maximum height of the surface Sz as a function of two laser cutting parameters, namely cutting speed and assist-gas pressure. The adequacy of the proposed model was validated by Analysis Of Variance (ANOVA). Experimental data were compared with the model’s data to verify the capacity of the proposed model. The results indicated that for fixed laser power, cutting speed is the predominant cutting parameter that affects the maximum height of surface roughness.


2019 ◽  
Vol 44 (1) ◽  
pp. 21-27
Author(s):  
Dobre Runchev ◽  
Filip Zdraveski ◽  
Irena Ivanova

The main objective of the research covered in this paper is to present results for the quality of surfaces thermally cut with a laser beam. The variety of steel materials used as samples on which laser cutting is performed are the following Č.0146 (1.0330), Č.0147 (1.0333), Č.2131 (1.5024), SS Ferbec CR, HARDOX 450 and HARDOX 550. Thermal cutting is carried out with a CNC controlled Fiber laser BAYKAL type BLS–F–1530. The quality of the cut surface is analyzed based on varying the power of the laser beam, changing cutting speed and the type of additional gas (oxygen, air and nitrogen). By visual inspection, measuring the roughness of the cut surface and measuring the width of the intersection, it is determined the influence of the factors like type of the base material, type of gases, the power of thelaser beam and the cutting speed, in accordance with the standards DIN EN ISO 9013-2002 and the JUS C.T3.022.


Author(s):  
S-L Chen

The sheer number of non-linear interacting factors responsible for the performance of laser cutting makes it impractical, in general, to investigate all the factors by experimental method only. To understand further the essential phenomena of the oxidation reaction in reactive CO2 laser cutting, a mathematical model was created in this research to investigate the effects of cutting parameters on the cutting front edge dynamic behaviour. Understanding the effects of various parameters is important for improving the performance and quality of laser cutting. The reactive CO2 laser cutting of a thin metallic plate utilizing a continuous-wave laser beam having a Gaussian intensity distribution was considered in this study. Both the beam absorptivity and the heat generated at the cutting front edge during the reactive cutting process were considered in this research. The numerical results of this work can be used to predict or estimate the variations in the location, speed and acceleration of the cutting front edge, given various gas compositions, gas pressures, cutting speeds and beam absorptivities. An on-line monitoring system for laser cutting was built, and a series of experiments was performed to record the fluctuating frequency of the cutting front edge. The results confirm that our theoretical results were in accordance with the related experimental results.


Sign in / Sign up

Export Citation Format

Share Document