Wear behavior and microstructure of Fe-C-Si-Cr-B-Ni hardfacing alloys

2021 ◽  
Vol 63 (3) ◽  
pp. 231-234
Author(s):  
Zeynep Taslicukur Öztürk

Abstract This study aims to investigate the relationship between wear resistance and microstructure of a hardfacing alloy Fe-C-Si-Cr-B-Ni system as well as investigating ways of improving the hardness of the hard facing layer through the addition of nickel to achieve a finer granular microstructure. Three hardfacing alloys are used for overlaying. Ferroboron (FeB) and Ferronickel(FeNi), are added to the massive wire during the welding process. A hardness test, microscopic characterization and wear analysis are carried out on the samples. The surfaces of the samples are examined using scanning electron micsoscope in order to better understand the wear mechanism. At room temperature, wear occurs through a combination of abrasive grooving and local delamination. Microstructure and hardness affect the wear resistance of the alloys. Test results shows that as hardness increases, wear resistance increases.

2016 ◽  
Vol 847 ◽  
pp. 460-465
Author(s):  
Ben Sheng Huang ◽  
Yao Zhu

Casing wear is one of the key issues in the development of oil and gas fields and in the process of drilling operations. In this study, the relationship between hardness and wear resistance of drill collar and casing was studied; thereby the wear conditions between the two materials were improved. Chemical analysis, optical microscopy, hardness test and friction wear test were conducted to study the effects of heat treatment on hardness of the drill collar 4145H and the casing 30Mn5V, and discuss the relationship between hardness and wear resistance of them. The results showed that the materials of drill collar and casing after different heat treatment had varying degrees of wear, both of the respective wear amounts were gradually increasing with the increase of hardness of them, the wear extent of casing material was greater than that of drill collar material. The hardness of casing material was the lowest and its wear resistance was the best when quenching at 880°C and tempering at 630°C. And when quenching at 900°C and tempering at 690°C, the hardness of drill collar material was the lowest and its wear resistance was the best. Therefore, the hardness of drill collar and casing can be improved by changing the heat treatment process to improve the wear resistance, thereby reducing the wear conditions between them.


2021 ◽  
Vol 1016 ◽  
pp. 56-62
Author(s):  
Carlos Camurri ◽  
Jasmín Maril ◽  
Eric Romero

The aim of this work was to study the wear behavior of high-chromium white cast iron of families ASTM A-532 II (B, D) and III A, used in mining equipment, in order to establish relationships between the wear resistance, hardness and microstructure of the alloys, with the ultimate purpose of predicting their resistance to abrasion. Samples from these cast irons were subjected to mechanical wear tests by rotating drum, then their micro/macro hardness was measured and microstructure analyzed by optical and scanning electron microscopy .It was found that when the macroscopic hardness differences were significant there was a strong correlation between the hardness and the loss of mass due to abrasion-impact wear. By contrast, when the alloys had similar hardness, the wear resistance was determined by morphology, size, and the distribution and connectivity of carbides and matrix and therefore was not predictable by an only simple hardness test.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Tuba Yener ◽  
Azmi Erdogan ◽  
Mustafa Sabri Gök ◽  
Sakin Zeytin

Abstract The aim of this study was to investigate the effect of low-temperature aluminizing process on the microstructure and dry sliding wear properties of Mirrax steel. Low-temperature aluminizing process was applied on Mirrax steel at 600, 650, and 700 °C for 2, 4, and 6 h. The packs for the process were prepared using pure aluminum powder as aluminum deposition source. Ammonium chloride NH4Cl and Seydisehir Al2O3 powder were used as the activator and the inert filler, respectively. Scanning electron microscope (SEM)/energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis were applied for characterization of the coating surfaces. The through-thickness variation in the layer microstructure was determined and it was found to vary between 1 µm and 45 µm which increased with higher process temperature and time. After the deposition process, the coating layer hardness increased to 1000 HVN, whereas the hardness of the matrix was 250 HVN. The wear tests were performed using a ball-on-disc tribometer under 5 N load at room temperature and 500 °C on aluminized and untreated Mirrax steel. In both room temperature and high-temperature wear tests, it was determined that the aluminizing process increased the wear resistance of Mirrax steel. Increasing aluminizing time and temperature also increased the wear resistance. The uncoated and thin-coated samples generally exhibited wear in the form of plastic deformation and adhesion related ruptures. A high degree of tribological layer was observed on the wear trace on samples with high coating thickness, especially in high-temperature tests. Therefore, the volume losses in these samples were induced by fatigue crack formation and delamination.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 682
Author(s):  
Liang Sun ◽  
Wenyan Zhai ◽  
Hui Dong ◽  
Yiran Wang ◽  
Lin He

Cr3C2-Ni cermet is a kind of promising material especially for wear applications due to its excellent wear resistance. However, researches were mainly concentrated on the experiment condition of room temperature, besides high-temperature wear mechanism of the cermet would be utilized much potential applications and also lack of consideration. In present paper, the influence of Mo content on the high-temperature wear behavior of in-situ Cr3C2-20 wt. % Ni cermet was investigated systematically. The friction-wear experiment was carried out range from room temperature to 800 °C, while Al2O3 ceramic was set as the counterpart. According to experimental results, it is indicated that the coefficient of friction (COF) of friction pairs risen at the beginning of friction stage and then declined to constant, while the wear rate of Cr3C2-20 wt. % Ni cermet risen continuously along with temperature increased, which attributes to the converted wear mechanism generally from typical abrasive wear to severe oxidation and adhesive wear. Generally, the result of wear resistance was enhanced for 13.4% (at 400 °C) and 31.5% (at 800 °C) by adding 1 wt. % Mo. The in-situ newly formed (Cr, Mo)7C3 ceramic particle and the lubrication phase of MoO3 can effectively improve the wear resistance of Cr3C2-20 wt. % Ni cermet.


2009 ◽  
Vol 83-86 ◽  
pp. 545-552 ◽  
Author(s):  
Majid Abbasi ◽  
S. Kheirandish ◽  
Y. Kharrazi ◽  
J. Hejazi

The abrasive wear behaviors of different types of steels were evaluated using the abrasive wheel as a new technique in the pin on disc method. It is shown that the abrasive studies using this test method is acceptable for high wear resistance metals such as Hadfield steels, while it is not proper for soft materials such as mild steel. The test results on the different materials also show that initial hardness of materials cannot merely determine the wear resistance. However, microstructural changes during the sliding have significant effect on the wear behavior and must be included.


2009 ◽  
Vol 79-82 ◽  
pp. 711-714
Author(s):  
Lei Zhou ◽  
Gui Lin Yin ◽  
Yu Dong Wang ◽  
Zhen Yu ◽  
Dan Nong He

WS2/MoS2/C composite lubricating films were prepared in an Ar/C2H2 atmosphere by magnetron reaction-sputtering using a WS2/MoS2 composite target. The relationship between the microstructure and the tribological performance of the films was investigated. The composite film has a compact microstructure, which is shown to have much superior tribological performance with lower friction coefficient and better wear resistance than pure MoS2 film in humid atmospheric conditions at room temperature. An increase in hardness of nearly one order of magnitude was reached, too.


2016 ◽  
Vol 68 (4) ◽  
pp. 476-481 ◽  
Author(s):  
Harun Mindivan

Purpose This study aims to investigate the microstructure and the abrasive wear features of the untreated and pack borided GGG 50 quality ductile iron under various working temperatures. Design/methodology/approach GGG 50 quality as-cast ductile iron samples were pack borided in Ekabor II powder at 900°C for 3 h, followed by furnace cooling. Structural characterization was made by optical microscopy. Mechanical characterization was made by hardness and pin-on-disc wear test. Pin-on-disc test was conducted on a 240-mesh Al2O3 abrasive paper at various temperatures in between 25 and 450°C. Findings Room temperature abrasive wear resistance of the borided ductile iron increased with an increase in its surface hardness. High-temperature abrasive wear resistances of the borided ductile iron linearly decreased with an increase in test temperature. However, the untreated ductile iron exhibited relatively high resistance to abrasion at a temperature of 150°C. Originality/value This study can be a practical reference and offers insight into the effects of boriding process on the increase of room temperature wear resistance. However, above 150°C, the untreated ductile iron exhibited similar abrasive wear performance as compared to the borided ductile iron.


2011 ◽  
Vol 700 ◽  
pp. 207-210
Author(s):  
Frantisek Cerny ◽  
Mohamed Ali Khalil Ibrahim ◽  
Jan Suchanek ◽  
Svatava Konvickova ◽  
Vladimir Jech ◽  
...  

The effect of gamma irradiation and subsequent thermal treatment on the wear resistance and friction behavior of ultrahigh molecular weight polyethylene (UHMWPE) has been studied. Irradiation of the polymer was performed using a 60Co γ-emitter at laboratory temperature. Radiation dose 50 kGy was applied. Some irradiated samples were thermally treated at 150˚C for period of 30 min. and then slowly cooled to room temperature. A linear reciprocating tribometer was used to investigate the wear behavior of UHMWPE against Co-Cr-Mo alloy. The tests have been performed in unlubrication conditions. An important increase in wear resistance of the modified UHMWPE in comparison with the original material was proved. Besides wear rate the selected mechanical characteristics (friction coefficient, Young’s modulus, yield strength, fracture strength, and hardness) of original and modified samples of UHMWPE have been determined.


2015 ◽  
Vol 816 ◽  
pp. 48-53
Author(s):  
Jing Zhang ◽  
Hua Shun Yu ◽  
Xin Ting Shuai ◽  
Hong Mei Chen ◽  
Guang Hui Min

Al2O3 particles reinforced ZL109 composites were prepared by in-situ reaction between Fe2O3+MnO2 and Al in this paper. The influence of ratio of Mn to Fe on the morphologies of Al-Si-Mn-Fe phase and mechanical properties of the composites was investigated. The microstructure was studied by electron probe micro-analyzer (EPMA) and transmission electron microscopy (TEM). The results show that the Al2O3 particles displaced by the Fe2O3+MnO2/Al system are in nanosize. The acicular Al-Si-Fe phases change from acicular to polygonal shape and become smaller with the increase manganese content. The hardness test results have no big difference on the composites. However, the ultimate tensile strength at room temperature and 350°C enhance evidently with the increasing of Mn/Fe.


1977 ◽  
Vol 99 (2) ◽  
pp. 143-146 ◽  
Author(s):  
S. M. Wiederhorn ◽  
E. R. Fuller ◽  
J. M. Bukowski ◽  
C. R. Robbins

Hydrothermal environments are expected to adversely affect the erosive resistance of castable refractories intended for use in high wear areas of coal gasification plants. The erosive wear behavior of two grades of refractories proposed for such use was studied at room temperature after exposure of the refractories to high-pressure steam. Wear occurs primarily in the cement phase that bonds the more wear-resistant aggregate. The wear resistance of the refractories depended on chemical interactions between the cement and the high pressure steam. Although chemical changes were observed to occur in both refractories, the wear resistance was found to decrease only in those cases for which the strength of the cement phase was substantially reduced.


Sign in / Sign up

Export Citation Format

Share Document