scholarly journals Progress in neuromorphic photonics

Nanophotonics ◽  
2017 ◽  
Vol 6 (3) ◽  
pp. 577-599 ◽  
Author(s):  
Thomas Ferreira de Lima ◽  
Bhavin J. Shastri ◽  
Alexander N. Tait ◽  
Mitchell A. Nahmias ◽  
Paul R. Prucnal

AbstractAs society’s appetite for information continues to grow, so does our need to process this information with increasing speed and versatility. Many believe that the one-size-fits-all solution of digital electronics is becoming a limiting factor in certain areas such as data links, cognitive radio, and ultrafast control. Analog photonic devices have found relatively simple signal processing niches where electronics can no longer provide sufficient speed and reconfigurability. Recently, the landscape for commercially manufacturable photonic chips has been changing rapidly and now promises to achieve economies of scale previously enjoyed solely by microelectronics. By bridging the mathematical prowess of artificial neural networks to the underlying physics of optoelectronic devices, neuromorphic photonics could breach new domains of information processing demanding significant complexity, low cost, and unmatched speed. In this article, we review the progress in neuromorphic photonics, focusing on photonic integrated devices. The challenges and design rules for optoelectronic instantiation of artificial neurons are presented. The proposed photonic architecture revolves around the processing network node composed of two parts: a nonlinear element and a network interface. We then survey excitable lasers in the recent literature as candidates for the nonlinear node and microring-resonator weight banks as the network interface. Finally, we compare metrics between neuromorphic electronics and neuromorphic photonics and discuss potential applications.

2020 ◽  
Vol 12 (2) ◽  
pp. 642 ◽  
Author(s):  
Marta Maria Sesana ◽  
Mathieu Rivallain ◽  
Graziano Salvalai

According to its strategic long-term vision, Europe wants to be a climate-neutral economy by 2050. Buildings play a crucial role in this vision, and they represent a sector with low-cost opportunities for high-level CO2 reduction. The challenge the renovation of the existing building stock, which must be increased to 3%/year, more than double compared to the current 1.2%/year. In this context, the ALliance for Deep RENovation (ALDREN) project has the goal of encouraging property owners to undertake renovation of existing buildings using a clear, robust, and comparable method. This paper aims to present the ALDREN approach and the ALDREN Building Renovation Passport (BRP), giving an overview of the connections and data links to other existing databases and certification schemes. To understand the data value potential of buildings, one requires reliable and trustworthy information. The Building Renovation Passport, introduced by the recent Energy Performance Building Directive (EPBD) recast 844/2018/EU, aims to provide this information. This paper presents the experience of the ALDREN BRP for non-residential buildings as well as the development procedure for its data model and the potential that this tool could have for the construction market. The ALDREN BRP has been structured into two main parts—BuildLog and RenoMap—with a common language that facilitates communication on the one hand and, on the other, the setting of renovation targets based on lifetime, operation, and user needs.


2022 ◽  
Vol 9 ◽  
Author(s):  
Chaoqun Peng ◽  
Jianfeng Chen ◽  
Qiumeng Qin ◽  
Zhi-Yuan Li

Topological one-way edge states have attracted increasing attention because of their intriguing fundamental physics and potential applications, particularly in the realm of photonics. In this paper, we present a theoretical and numerical demonstration of topological one-way edge states in an air-hole honeycomb gyromagnetic photonic crystal biased by an external magnetic field. Localized horizontally to the edge and confined in vertical direction by two parallel metallic plates, these unique states possess robust one-way propagation characteristics. They are strongly robust against various types of defects, imperfections and sharp corners on the path, and even can unidirectionally transport along the irregular edges of arbitrary geometries. We further utilize the one-way property of edge states to overcome entirely the issue of back-reflections and show the design of topological leaky wave antennas. Our results open a new door towards the observation of nontrivial edge states in air-hole topological photonic crystal systems, and offer useful prototype of robust topological photonic devices, such as geometry-independent topological energy flux loops and topological leaky wave antennas.


2020 ◽  
Author(s):  
Jonathan Sanching Tsay ◽  
Alan S. Lee ◽  
Guy Avraham ◽  
Darius E. Parvin ◽  
Jeremy Ho ◽  
...  

Motor learning experiments are typically run in-person, exploiting finely calibrated setups (digitizing tablets, robotic manipulandum, full VR displays) that provide high temporal and spatial resolution. However, these experiments come at a cost, not limited to the one-time expense of purchasing equipment but also the substantial time devoted to recruiting participants and administering the experiment. Moreover, exceptional circumstances that limit in-person testing, such as a global pandemic, may halt research progress. These limitations of in-person motor learning research have motivated the design of OnPoint, an open-source software package for motor control and motor learning researchers. As with all online studies, OnPoint offers an opportunity to conduct large-N motor learning studies, with potential applications to do faster pilot testing, replicate previous findings, and conduct longitudinal studies (GitHub repository: https://github.com/alan-s-lee/OnPoint).


2020 ◽  
Vol 23 (4) ◽  
pp. 274-284 ◽  
Author(s):  
Jingang Che ◽  
Lei Chen ◽  
Zi-Han Guo ◽  
Shuaiqun Wang ◽  
Aorigele

Background: Identification of drug-target interaction is essential in drug discovery. It is beneficial to predict unexpected therapeutic or adverse side effects of drugs. To date, several computational methods have been proposed to predict drug-target interactions because they are prompt and low-cost compared with traditional wet experiments. Methods: In this study, we investigated this problem in a different way. According to KEGG, drugs were classified into several groups based on their target proteins. A multi-label classification model was presented to assign drugs into correct target groups. To make full use of the known drug properties, five networks were constructed, each of which represented drug associations in one property. A powerful network embedding method, Mashup, was adopted to extract drug features from above-mentioned networks, based on which several machine learning algorithms, including RAndom k-labELsets (RAKEL) algorithm, Label Powerset (LP) algorithm and Support Vector Machine (SVM), were used to build the classification model. Results and Conclusion: Tenfold cross-validation yielded the accuracy of 0.839, exact match of 0.816 and hamming loss of 0.037, indicating good performance of the model. The contribution of each network was also analyzed. Furthermore, the network model with multiple networks was found to be superior to the one with a single network and classic model, indicating the superiority of the proposed model.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 210
Author(s):  
Da Teng ◽  
Kai Wang

The waveguiding of terahertz surface plasmons by a GaAs strip-loaded graphene waveguide is investigated based on the effective-index method and the finite element method. Modal properties of the effective mode index, modal loss, and cut-off characteristics of higher order modes are investigated. By modulating the Fermi level, the modal properties of the fundamental mode could be adjusted. The accuracy of the effective-index method is verified by a comparison between the analytical results and numerical simulations. Besides the modal properties, the crosstalk between the adjacent waveguides, which determines the device integration density, is studied. The findings show that the effective-index method is highly valid for analyzing dielectric-loaded graphene plasmon waveguides in the terahertz region and may have potential applications in subwavelength tunable integrated photonic devices.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Qingqing Cheng ◽  
Juncheng Wang ◽  
Ling Ma ◽  
Zhixiong Shen ◽  
Jing Zhang ◽  
...  

AbstractAiry beams exhibit intriguing properties such as nonspreading, self-bending, and self-healing and have attracted considerable recent interest because of their many potential applications in photonics, such as to beam focusing, light-sheet microscopy, and biomedical imaging. However, previous approaches to generate Airy beams using photonic structures have suffered from severe chromatic problems arising from strong frequency dispersion of the scatterers. Here, we design and fabricate a metasurface composed of silicon posts for the frequency range 0.4–0.8 THz in transmission mode, and we experimentally demonstrate achromatic Airy beams exhibiting autofocusing properties. We further show numerically that a generated achromatic Airy-beam-based metalens exhibits self-healing properties that are immune to scattering by particles and that it also possesses a larger depth of focus than a traditional metalens. Our results pave the way to the realization of flat photonic devices for applications to noninvasive biomedical imaging and light-sheet microscopy, and we provide a numerical demonstration of a device protocol.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ki Young Lee ◽  
Kwang Wook Yoo ◽  
Youngsun Choi ◽  
Gunpyo Kim ◽  
Sangmo Cheon ◽  
...  

Abstract The topological properties of photonic microstructures are of great interest because of their experimental feasibility for fundamental study and potential applications. Here, we show that robust guided-mode-resonance states exist in photonic domain-wall structures whenever the complex photonic band structures involve certain topological correlations in general. Using the non-Hermitian photonic analogy of the one-dimensional Dirac equation, we derive essential conditions for photonic Jackiw-Rebbi-state resonances taking advantage of unique spatial confinement and spot-like spectral features which are remarkably robust against random parametric errors. Therefore, the proposed resonance configuration potentially provides a powerful method to create compact and stable photonic resonators for various applications in practice.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3742
Author(s):  
Payam Sadrolodabaee ◽  
Josep Claramunt ◽  
Mònica Ardanuy ◽  
Albert de la Fuente

Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6–10% by weight or nonwoven fabrics in 3–7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized. Flexural resistance in pre- and post-crack, toughness, and stiffness of the resulting composites were assessed in addition to unrestrained drying shrinkage testing. The results obtained from those programs were analyzed and compared to identify the optimal composite and potential applications. Based on the results of experimental analysis, the feasibility of using this textile waste composite as a potential construction material in nonstructural concrete structures such as facade cladding, raised floors, and pavements was confirmed. The optimal composite was proven to be the one reinforced with six layers of nonwoven fabric, with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m2.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
R. W. Rambach ◽  
J. Taiber ◽  
C. M. L. Scheck ◽  
C. Meyer ◽  
J. Reboud ◽  
...  

Abstract We demonstrate that the propagation path of a surface acoustic wave (SAW), excited with an interdigitated transducer (IDT), can be visualized using a thin liquid film dispensed onto a lithium niobate (LiNbO3) substrate. The practical advantages of this visualization method are its rapid and simple implementation, with many potential applications including in characterising acoustic pumping within microfluidic channels. It also enables low-cost characterisation of IDT designs thereby allowing the determination of anisotropy and orientation of the piezoelectric substrate without the requirement for sophisticated and expensive equipment. Here, we show that the optical visibility of the sound path critically depends on the physical properties of the liquid film and identify heptane and methanol as most contrast rich solvents for visualization of SAW. We also provide a detailed theoretical description of this effect.


2021 ◽  
Vol 11 (4) ◽  
pp. 1887
Author(s):  
Markus Scherrer ◽  
Noelia Vico Triviño ◽  
Svenja Mauthe ◽  
Preksha Tiwari ◽  
Heinz Schmid ◽  
...  

It is a long-standing goal to leverage silicon photonics through the combination of a low-cost advanced silicon platform with III-V-based active gain material. The monolithic integration of the III-V material is ultimately desirable for scalable integrated circuits but inherently challenging due to the large lattice and thermal mismatch with Si. Here, we briefly review different approaches to monolithic III-V integration while focusing on discussing the results achieved using an integration technique called template-assisted selective epitaxy (TASE), which provides some unique opportunities compared to existing state-of-the-art approaches. This method relies on the selective replacement of a prepatterned silicon structure with III-V material and thereby achieves the self-aligned in-plane monolithic integration of III-Vs on silicon. In our group, we have realized several embodiments of TASE for different applications; here, we will focus specifically on in-plane integrated photonic structures due to the ease with which these can be coupled to SOI waveguides and the inherent in-plane doping orientation, which is beneficial to waveguide-coupled architectures. In particular, we will discuss light emitters based on hybrid III-V/Si photonic crystal structures and high-speed InGaAs detectors, both covering the entire telecom wavelength spectral range. This opens a new path towards the realization of fully integrated, densely packed, and scalable photonic integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document