scholarly journals Twist angle dependent absorption feature induced by interlayer rotations in CVD bilayer graphene

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wen-Guang Zhou ◽  
Yu-Chen Leng ◽  
Li-Xiang Liu ◽  
Ming-Ming Yang ◽  
Wei Liu ◽  
...  

Abstract Bilayer graphene (BLG) grown via chemical vapor deposition (CVD) tends to exhibit twisted stacking. The twist angle θ t in twisted BLG (tBLG) provides a new degree of freedom for engineering its electronic and optical properties. In this paper, we investigate the θ t-dependent optical absorption in tBLG and deeply understand the electronic structure-optical properties correlations. New absorption peaks, whose wavelengths are modified by θ t, are observed on the feature of optical contrast (OC) in tBLG. Under the corresponding energy excitation, the Raman G mode in tBLG exhibits a significant enhancement. Furthermore, the results of θ t obtained by OC absorption peak are verified to be consistent with those by the Raman R mode. All these properties are proved to be related to the energy difference between low-energy Van Hove singularities (E VHS) in the density of states of tBLGs. This work builds a relation between optical absorption and twist angle, providing a viable method to identifying twist angles in tBLGs.

Author(s):  
Y. H. Ho ◽  
J. Y. Wu ◽  
Y. H. Chiu ◽  
J. Wang ◽  
M. F. Lin

The electronic and optical properties of monolayer and bilayer graphene are investigated to verify the effects of interlayer interactions and external magnetic field. Monolayer graphene exhibits linear bands in the low-energy region. Then the interlayer interactions in bilayers change these bands into two pairs of parabolic bands, where the lower pair is slightly overlapped and the occupied states are asymmetric with respect to the unoccupied ones. The characteristics of zero-field electronic structures are directly reflected in the Landau levels. In monolayer and bilayer graphene, these levels can be classified into one and two groups, respectively. With respect to the optical transitions between the Landau levels, bilayer graphene possesses much richer spectral features in comparison with monolayers, such as four kinds of absorption channels and double-peaked absorption lines. The explicit wave functions can further elucidate the frequency-dependent absorption rates and the complex optical selection rules. These numerical calculations would be useful in identifying the optical measurements on graphene layers.


2009 ◽  
Vol 1165 ◽  
Author(s):  
Xiaonan Li

AbstractTin oxide (SnO2) is a durable, inexpensive transparent conducting oxide (TCO) material used for thin-film photovoltaic devices. However, the optical properties of conducting SnO2:F are generally not as good as in other conducting TCO materials such as ITO and ZnO:Al. Our previous analyses indicate that for thin-film solar cells, improving the optical properties of SnO2-coated glass could enhance photon collection and gain up to 10% additional photocurrent. Previously, we showed that some commercial SnO2 samples could have much higher optical absorption than others [2]. In this work, we continue our study on causes that could contribute to the high optical absorption of SnO2 films. The SnO2:F samples are fabricated by low-pressure metal-organic chemical vapor deposition or atmospheric-pressure chemical vapor deposition with tin precursors that includes different amounts of chlorine. Optical, electrical, and compositional analyses were performed. In addition to the free-carrier-introduced optical absorption, the non-active dopant also impacts the optical absorption. Among the SnO2 films fabricated with different precursors, the optical properties show a relationship based on the level of chlorine in the precursors and films. With a low-optical-absorption SnO2 layer, the solar cell could have better photon collection and a higher short-circuit current density.


CrystEngComm ◽  
2021 ◽  
Vol 23 (15) ◽  
pp. 2889-2896
Author(s):  
Jinglei Han ◽  
Fa Cao ◽  
Xiaohong Ji

The main features of phonon vibrations of twisted bilayer MoS2 are tuned by the twist angle.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luzhao Sun ◽  
Zihao Wang ◽  
Yuechen Wang ◽  
Liang Zhao ◽  
Yanglizhi Li ◽  
...  

AbstractTwisted bilayer graphene (tBLG) has recently attracted growing interest due to its unique twist-angle-dependent electronic properties. The preparation of high-quality large-area bilayer graphene with rich rotation angles would be important for the investigation of angle-dependent physics and applications, which, however, is still challenging. Here, we demonstrate a chemical vapor deposition (CVD) approach for growing high-quality tBLG using a hetero-site nucleation strategy, which enables the nucleation of the second layer at a different site from that of the first layer. The fraction of tBLGs in bilayer graphene domains with twist angles ranging from 0° to 30° was found to be improved to 88%, which is significantly higher than those reported previously. The hetero-site nucleation behavior was carefully investigated using an isotope-labeling technique. Furthermore, the clear Moiré patterns and ultrahigh room-temperature carrier mobility of 68,000 cm2 V−1 s−1 confirmed the high crystalline quality of our tBLG. Our study opens an avenue for the controllable growth of tBLGs for both fundamental research and practical applications.


2005 ◽  
Vol 480-481 ◽  
pp. 287-292 ◽  
Author(s):  
S.E. Paje ◽  
F. Teran ◽  
J.M. Riveiro ◽  
J. Llopis ◽  
M.A. García ◽  
...  

In this research we study optical absorption and morphology of silver films prepared with a sputtering method. Silver granular films are obtained on a glass substrate for films with thickness smaller than about 60 Å. Superficial silver clusters of around 100 nm in diameter are clearly seen in the atomic force micrographs. The absorption of these samples are characterized by plasmon excitation in the 450-650 nm spectral range, which differs from the known excitation of silver nanoparticles fabricated by different techniques. The optical absorption of silver granular films depend on sputtering conditions like substrate temperature or deposition rate and correlates with the surface morphology.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 637
Author(s):  
Hongliang Li ◽  
Zewen Lin ◽  
Yanqing Guo ◽  
Jie Song ◽  
Rui Huang ◽  
...  

The influence of N incorporation on the optical properties of Si-rich a-SiCx films deposited by very high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) was investigated. The increase in N content in the films was found to cause a remarkable enhancement in photoluminescence (PL). Relative to the sample without N incorporation, the sample incorporated with 33% N showed a 22-fold improvement in PL. As the N content increased, the PL band gradually blueshifted from the near-infrared to the blue region, and the optical bandgap increased from 2.3 eV to 5.0 eV. The enhancement of PL was suggested mainly from the effective passivation of N to the nonradiative recombination centers in the samples. Given the strong PL and wide bandgap of the N incorporated samples, they were used to further design an anti-counterfeiting label.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Xiaowei Wang ◽  
Feng Liang ◽  
Degang Zhao ◽  
Zongshun Liu ◽  
Jianjun Zhu ◽  
...  

Abstract Three InGaN/GaN MQWs samples with varying GaN cap layer thickness were grown by metalorganic chemical vapor deposition (MOCVD) to investigate the optical properties. We found that a thicker cap layer is more effective in preventing the evaporation of the In composition in the InGaN quantum well layer. Furthermore, the quantum-confined Stark effect (QCSE) is enhanced with increasing the thickness of GaN cap layer. In addition, compared with the electroluminescence measurement results, we focus on the difference of localization states and defects in three samples induced by various cap thickness to explain the anomalies in room temperature photoluminescence measurements. We found that too thin GaN cap layer will exacerbates the inhomogeneity of localization states in InGaN QW layer, and too thick GaN cap layer will generate more defects in GaN cap layer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdur Rauf ◽  
Muhammad Adil ◽  
Shabeer Ahmad Mian ◽  
Gul Rahman ◽  
Ejaz Ahmed ◽  
...  

AbstractHematite (Fe2O3) is one of the best candidates for photoelectrochemical water splitting due to its abundance and suitable bandgap. However, its efficiency is mostly impeded due to the intrinsically low conductivity and poor light absorption. In this study, we targeted this intrinsic behavior to investigate the thermodynamic stability, photoconductivity and optical properties of rhodium doped hematite using density functional theory. The calculated formation energy of pristine and rhodium doped hematite was − 4.47 eV and − 5.34 eV respectively, suggesting that the doped material is thermodynamically more stable. The DFT results established that the bandgap of doped hematite narrowed down to the lower edge (1.61 eV) in the visible region which enhanced the optical absorption and photoconductivity of the material. Moreover, doped hematite has the ability to absorb a broad spectrum (250–800) nm. The enhanced optical absorption boosted the photocurrent and incident photon to current efficiency. The calculated results also showed that the incorporation of rhodium in hematite induced a redshift in optical properties.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaomeng Liu ◽  
Cheng-Li Chiu ◽  
Jong Yeon Lee ◽  
Gelareh Farahi ◽  
Kenji Watanabe ◽  
...  

AbstractMoiré superlattices created by the twisted stacking of two-dimensional crystals can host electronic bands with flat energy dispersion in which enhanced interactions promote correlated electron states. The twisted double bilayer graphene (TDBG), where two Bernal bilayer graphene are stacked with a twist angle, is such a moiré system with tunable flat bands. Here, we use gate-tuned scanning tunneling spectroscopy to directly demonstrate the tunability of the band structure of TDBG with an electric field and to show spectroscopic signatures of electronic correlations and topology for its flat band. Our spectroscopic experiments are in agreement with a continuum model of TDBG band structure and reveal signatures of a correlated insulator gap at partial filling of its isolated flat band. The topological properties of this flat band are probed with the application of a magnetic field, which leads to valley polarization and the splitting of Chern bands with a large effective g-factor.


Sign in / Sign up

Export Citation Format

Share Document