scholarly journals Assessment Of Biologically Synthesized Ag Nanoparticles Toxicity Against E. coli, Staphylococcus aureus, Parachlorella kessleri And Sinapis alba

2015 ◽  
Vol 14 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Jana Kaduková ◽  
Oksana Velgosová ◽  
Anna Mražíková ◽  
Renáta Marcinčáková ◽  
Eva Tkáčová

Abstract In general, Ag+ ions and AgNPs are considered to be the most toxic for bacterial cells and less toxic for higher organisms. In the present work inhibitory effects of biologically prepared silver nanoparticles on the growth of bacteria E. coli CCM 3954 and Staphylococcus aureus CCM 3953, green microscopic alga Parachlorella kessleri LARG/1 and seed germination and root growth of plant Sinapis alba seeds were investigated. Surprisingly, silver nanoparticles showed much stronger inhibitory effects on plant seed germination and root growth than on the bacterial growth. At concentration of 75 mg/l AgNPs both seed germination and root growth of Sinapis alba was inhibited whereas inhibition of the growth of E. coli and S. aureus was observed at >195 mg/l. Growth inhibition of alga Parachlorella kessleri was recorded at 300 mg/l AgNPs concentration. The inhibitory effect of silver ions was much higher compared to silver nanoparticles. Even 20 mg/l concentration of Ag+ ions inhibited the root growth and concentration > 45 mg/l inhibited germination of Sinapis alba seeds. Inhibition zones in both studied bacteria were found at concentration > 140 mg/l.

2020 ◽  
Vol 26 (6) ◽  
pp. 200454-0
Author(s):  
Sabaoon Shamshad ◽  
Jamshaid Rashid ◽  
Ihsan-ul-haq ◽  
Naseem Iqbal ◽  
Saif Ullah Awan

Multidrug resistance of bacteria is an emerging human health hazard and warrants development of novel antibacterial agents with more effective mode of action. Here, zinc oxide and silver nanomaterials were prepared using Ficus palmata Forssk leaf extract with efficient antibacterial activity. SEM coupled with EDS confirmed the spherical symmetry with average particle diameter 50 to 65 nm while the XRD confirmed crystalline face centered cubic structure of silver and hexagonal crystallize phase of zinc oxide nanoparticles. Antibacterial activity was evaluated for 8 pathogenic bacterial strains including 3 drug resistant pathogenic strains. The nanoparticles showed enhanced growth inhibition for resistant strains in comparison with the broad-spectrum antibiotics i.e. roxithromycin and cefixime. Minimum inhibitory concentration in μg.mL<sup>-1</sup> of silver nanoparticles was found to be as low as 33.3 for resistant Streptococcus haemolyticus; 11.1 for Staphylococcus aureus and E Coli; and 3.7 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa. Similarly, the minimum inhibitory concentration of zinc oxide nanoparticles was found to be 100 μg.mL<sup>-1</sup> against resistant Streptococcus haemolyticus and Staphylococcus aureus; 11.1 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa; and 3.7 μg.mL<sup>-1</sup> against resistant E coli. Ficus palmata Forssk leaf extracts can be explored effectively for synthesizing active antibacterial nanomaterials as a non-toxic and environmentally benign synthesis route.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Thi-Diem Bui ◽  
Quang-Liem Nguyen ◽  
Thi-Bich Luong ◽  
Van Thuan Le ◽  
Van-Dat Doan

In this study, Mn-doped ZnSe/ZnS core/shell quantum dots (CSQDs) were synthesized in aqueous solution using polyethylene glycol as a surface stabilizer and successfully applied in the detection of Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA) for the first time. The CSQDs were conjugated with anti-E. coli antibody and anti-MRSA antibody via protein A supported by 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride for fluorescent labeling of the intact bacterial cells. The detection was performed for the bacterial strains cultivated in Luria-Bertani liquid medium. The obtained results indicate that E. coli O157:H7 and MRSA can be detected within 30 min at a high sensitivity of 101 CFU/mL. This labeling method based on the highly fluorescent CSQDs may have great potential for use in the food industry to check and prevent outbreaks of foodborne illness.


2003 ◽  
Vol 9 (5) ◽  
pp. 353-358 ◽  
Author(s):  
O. Sagdic ◽  
A. G. Karahan ◽  
M. Ozcan ◽  
G. Ozkan

Eighteen extracts of spices commonly consumed worldwide and grown naturally in Turkey were tested against twenty three bacterial strains to compare their antibacterial effects with eleven antibiotics. Eight pathogens and fifteen lactobacilli isolated from chick intestine were used as the test microorganisms. Pathogens (six different Staphylococcus aureus strains, Escherichia coli ATCC 25922 and Yersinia enterocolitica ATCC 1501) were grown in Nutrient broth and lactobacilli in MRS broth. Hop extracts formed inhibition zones against S. aureus strains of upto 36 mm. Inhibitory effects of hop extracts against S. aureuswere generally higher than that of erythromycin as antibiotic. Helichrysum compactum extract produced an inhibition zone of 23mm to E. coli ATCC 25922 and 26mm to Y. enterocolitica ATCC 1501. Helichrysum compactum extract inhibited the growth of Y. enterocolitica ATCC 1501 more than other spice extracts. While inhibition zones of these extracts against lactobacilli were found smaller than on S. aureus strains, inhibition zones of the same extracts against lactobacilli were found similar to those of E. coli ATCC 25922 and Y. enterocolitica ATCC 1501.


2011 ◽  
Vol 322 ◽  
pp. 43-46
Author(s):  
Shu Qing Guo ◽  
Xiang Yuan Dong

Hydrothermal humification (HTH) is a novel way to treat biomass in order to produce soil conditioner or organic fertilizer. A plant seed germination technique was used to assess the effect of HTH material derived from garden waste on seed germination, root elongation and germination index (GI) of cucumber at different stages of incubation. The incubation experiment was carried out with the mixture of HTH material and soil at a ratio of 1:3, 1:5 and 1:10 (HTH material:soil, wet weight) in soil. The results showed there are direct positive effects of the HTH material on seed germination and root growth. GI all were over 80%. High addition rates had non significantly negative effects on plant growth.


2005 ◽  
Vol 49 (5) ◽  
pp. 1770-1774 ◽  
Author(s):  
Yoshihiro Inoue ◽  
Toshiko Hada ◽  
Akiko Shiraishi ◽  
Kazuma Hirose ◽  
Hajime Hamashima ◽  
...  

ABSTRACT We examined the antibacterial activities against Staphylococcus aureus of three diterpenes, namely, geranylgeraniol, teprenone, and phytol, by using a broth dilution with shaking method to identify the effects of diterpenes with long aliphatic carbon chains. We also performed time-kill assays and measured the leakage of K+ ions from bacterial cells in response to these diterpenes. The diterpenes used inhibited the growth of S. aureus at concentrations of 0.15 μg/ml, as determined by damage to the cell membranes, and had clear bactericidal activity. However, the inhibitory effects of the diterpenes decreased when the concentration of each was raised above a certain level. The diterpenes tested in this study appeared to have both growth-inhibitory and growth-accelerating effects, and the net effect of each depended on its concentration.


2009 ◽  
Vol 2009 ◽  
pp. 1-5 ◽  
Author(s):  
Lin Li ◽  
Yi Li ◽  
Jiashen Li ◽  
Lei Yao ◽  
Arthur F. T. Mak ◽  
...  

Nanosilver has been studied as a valuable material for it strong antibacterial effects. In this study, we investigated the antibacterial properties of nano silver Poly-L-Lactic acid (Ag/PLLA) composite fibrous membranes. Ag/PLLA fibrous membranes were prepared with silver nanoparticles having weight ratio of silver nanoparticles to PLLA at 5% (w/w). In vitro antibacterial tests were performed usingEscherichia coli(E. coli) andStaphylococcus aureus(Staph.) to determine the antibacterial capability of the Ag/PLLA fibrous membranes. As the results suggested, Ag/PLLA fibrous membranes showed strong antibacterial properties. Thus, Ag/PLLA fibrous membrane can be used as an antibacterial scaffold for tissue engineering.


2019 ◽  
Vol 13 (2) ◽  
pp. 39-47 ◽  
Author(s):  
Hathaichanok Tamiyakul ◽  
Sittiruk Roytrakul ◽  
Janthima Jaresitthikunchai ◽  
Narumon Phaonakrop ◽  
Somboon Tanasupawat ◽  
...  

Abstract Background While silver nanoparticles (AgNPs) are increasingly attractive as an antibacterial agent in many applications, the effect of AgNPs on bacterial protein profiles, especially AgNPs stabilized by polymeric molecules, is not well understood. Objectives To investigate the changes in bacterial protein patterns by AgNPs capped with poly (4-styrenesulfonic acid-co-maleic acid) (AgNPs-PSSMA) polymer toward Staphylococcus aureus ATCC 25923 and Escherichia coli ATCC 25922. Methods The growth of bacteria after incubated with AgNPs-PSSMA for different time intervals was determined by optical density at 600 nm. Their protein patterns were observed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and the proteomic analysis of extracted proteins was determined by liquid chromatography-tandem mass spectrometry (LC–MS/MS). Results AgNPs-PSSMA was able to inhibit the growth of both S. aureus and E. coli cells. The treated bacterial cells expressed more proteins than the untreated cells as seen from SDS-PAGE study. Nanosilver (NS) caused the upregulation of metabolic gene, waaA, in S. aureus cells. For E. coli cells, the upregulated proteins were metabolic genes (srlB, fliE, murD) and other genes dealt with DNA replication (dinG), DNA–RNA transcription (yrdD), RNA– protein translation (rplD), molecular transport (sapF), and signal transduction (tdcF). Conclusions The antibacterial effect of AgNPs-PSSMA may arise by changing the bacterial proteins and thus interfering with the normal cell function.


2011 ◽  
Vol 13 (3) ◽  
pp. 293-297 ◽  
Author(s):  
C.E Castro ◽  
J.M Ribeiro ◽  
T.T Diniz ◽  
A.C Almeida ◽  
L.C Ferreira ◽  
...  

The antibacterial effect of Lippia sidoides (rosemary pepper) essential oil was tested against the bacteria Staphylococcus aureus and Escherichia coli isolated from homemade Minas cheese produced in Brazil. The Minimum Inhibitory Concentration (MIC) determined in the Dilution Test was 13 µL oil mL-1 for both bacteria, which characterizes inhibitory action in broth for a 24-hour interaction period. The Minimum Bactericidal Concentration (MBC) determined in the Suspension Test, with one minute of contact, was 25 µL oil mL-1 for both tested bacteria, obtaining at this concentration a bactericidal effect of 99.9% on the viable bacterial cells from each sample. Results demonstrated the bacterial activity of Lippia sidoides essential oil against S. aureus and E. coli, suggesting its use as an antibacterial agent in foods.


2020 ◽  
Vol 83 (8) ◽  
pp. 1302-1306
Author(s):  
EUN-SEON LEE ◽  
JONG-HUI KIM ◽  
MI-HWA OH

ABSTRACT In dairy plants, clean-in-place (CIP) equipment cannot be disassembled, making it difficult to clean the inner surface of pipes. In this study, the inhibitory effects of chemical agents on biofilms formed by three foodborne pathogens, Bacillus cereus, Escherichia coli, and Staphylococcus aureus, was evaluated in a dairy CIP system. The experiment was conducted on a laboratory scale. Each of the three bacteria (200 μL) was inoculated onto stainless steel (SS) chips (25 by 25 mm), and the effect of single cleaning agents was evaluated. Individual treatments with NaClO (30, 50, 100, and 200 ppm), NaOH (0.005, 0.01, 0.05, and 0.1%), citric acid (1, 3, 5, and 7%), and nisin (5, 10, 25, 50, 100, and 200 ppm) were used to clean the SS chip for 10 min. The most effective concentration of each solution was selected for further testing in a commercial plant. Simultaneous cleaning with 200 ppm of NaClO (10 min) and 7% citric acid (10 min) reduced the biofilms of B. cereus, E. coli, and S. aureus by 6.9, 7.0, and 8.0 log CFU/cm2, respectively. Both 7% citric acid and 0.1% NaOH were optimal treatments for E. coli. NaClO and citric acid are approved for use as food additives in the Republic of Korea. Our results revealed that a combined treatment with NaClO and citric acid is the most effective approach for reducing biofilms formed by common foodborne pathogens on CIP equipment. These findings can contribute to the production of safe dairy products. HIGHLIGHTS


Biomolecules ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1481
Author(s):  
Agnieszka Gibała ◽  
Paulina Żeliszewska ◽  
Tomasz Gosiewski ◽  
Agnieszka Krawczyk ◽  
Dorota Duraczyńska ◽  
...  

The biocidal properties of silver nanoparticles (AgNPs) prepared with the use of biologically active compounds seem to be especially significant for biological and medical application. Therefore, the aim of this research was to determine and compare the antibacterial and fungicidal properties of fifteen types of AgNPs. The main hypothesis was that the biological activity of AgNPs characterized by comparable size distributions, shapes, and ion release profiles is dependent on the properties of stabilizing agent molecules adsorbed on their surfaces. Escherichia coli and Staphylococcus aureus were selected as models of two types of bacterial cells. Candida albicans was selected for the research as a representative type of eukaryotic microorganism. The conducted studies reveal that larger AgNPs can be more biocidal than smaller ones. It was found that positively charged arginine-stabilized AgNPs (ARGSBAgNPs) were the most biocidal among all studied nanoparticles. The strongest fungicidal properties were detected for negatively charged EGCGAgNPs obtained using (−)-epigallocatechin gallate (EGCG). It was concluded that, by applying a specific stabilizing agent, one can tune the selectivity of AgNP toxicity towards desired pathogens. It was established that E. coli was more sensitive to AgNP exposure than S. aureus regardless of AgNP size and surface properties.


Sign in / Sign up

Export Citation Format

Share Document