Method for predicting lignocellulose components in jute by transformed FT-NIR spectroscopic data and chemometrics

2019 ◽  
Vol 34 (1) ◽  
pp. 1-9 ◽  
Author(s):  
M. Nashir Uddin ◽  
Sohan Ahmed ◽  
Swapan Kumer Ray ◽  
M. Saiful Islam ◽  
Ariful Hai Quadery ◽  
...  

Abstract In this investigation, a nondestructive technique has been developed for determining chemical composition of jute fiber by chemometric modeling with pretreated FT-NIR spectroscopic data. The chemical composition of jute fibers in wet chemical method were, 58 to 61.80 % α-cellulose, 13.0 to 21.90 % lignin, 9.89 to 16.8 % pentosan and 79.02 to 88.33 % holocellulose. FT-NIR spectral data from range 9000–4000 cm−1 of all jute samples were collected from the instrument. Spectral data of jute samples were pretreated with second order derivatives (SOD), standard normal variate (SNV) techniques and both together were used before calibration. Two chemometric calibration techniques: partial least square regression (PLSR) and artificial neural network (ANN) were assessed for predicting chemical compositions of Jute fibers. Result shows that prediction efficiency ({\text{R}^{2}}) of ANN varies from 72–99 % for calibration, validation and test datasets. However, by PLSR, {\text{R}^{2}} are much higher and consistent than those by earlier one. For α-cellulose, lignin, pentosan and holocellulose {\text{R}^{2}} values hover around 95–99 %. Thereby, a non-destructive, simple and cost effective novel method is being proposed to determine chemical compositions of jute with pretreated FT-NIR spectral data and chemometric calibration techniques.

Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 5001 ◽  
Author(s):  
Divo Dharma Silalahi ◽  
Habshah Midi ◽  
Jayanthi Arasan ◽  
Mohd Shafie Mustafa ◽  
Jean-Pierre Caliman

The extraction of relevant wavelengths from a large dataset of Near Infrared Spectroscopy (NIRS) is a significant challenge in vibrational spectroscopy research. Nonetheless, this process allows the improvement in the chemical interpretability by emphasizing the chemical entities related to the chemical parameters of samples. With the complexity in the dataset, it may be possible that irrelevant wavelengths are still included in the multivariate calibration. This yields the computational process to become unnecessary complex and decreases the accuracy and robustness of the model. In multivariate analysis, Partial Least Square Regression (PLSR) is a method commonly used to build a predictive model from NIR spectral data. However, in the PLSR method and common commercial chemometrics software, there is no standard wavelength selection procedure applied to screen the irrelevant wavelengths. In this study, a new robust wavelength selection procedure called the modified VIP-MCUVE (mod-VIP-MCUVE) using Filter-Wrapper method and input scaling strategy is introduced. The proposed method combines the modified Variable Importance in Projection (VIP) and modified Monte Carlo Uninformative Variable Elimination (MCUVE) to calculate the scale matrix of the input variable. The modified VIP uses the orthogonal components of Partial Least Square (PLS) in investigating the informative variable in the model by applying the amount of variation both in X and y{SSX,SSY}, simultaneously. The modified MCUVE uses a robust reliability coefficient and a robust tolerance interval in the selection procedure. To evaluate the superiority of the proposed method, the classical VIP, MCUVE, and autoscaling procedure in classical PLSR were also included in the evaluation. Using artificial data with Monte Carlo simulation and NIR spectral data of oil palm (Elaeis guineensis Jacq.) fruit mesocarp, the study shows that the proposed method offers advantages to improve model interpretability, to be computationally extensive, and to produce better model accuracy.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6245
Author(s):  
Simone Poggesi ◽  
Amanda Dupas de Matos ◽  
Edoardo Longo ◽  
Danila Chiotti ◽  
Ulrich Pedri ◽  
...  

A multivariate regression approach based on sensory data and chemical compositions has been applied to study the correlation between the sensory and chemical properties of Pinot Blanc wines from South Tyrol. The sensory properties were identified by descriptive analysis and the chemical profile was obtained by HS-SPME-GC/MS and HPLC. The profiles of the most influencing (positively or negatively) chemical components have been presented for each sensory descriptor. Partial Least Square Regression (PLS) and Principal Component Regression (PCR) models have been tested and applied. Visual (clarity, yellow colour), gustatory (sweetness, sourness, saltiness, bitterness, astringency, and warmness) and olfactory (overall intensity, floral, apple, pear, tropical fruit, dried fruit, fresh vegetative, spicy, cleanness, and off-odours) descriptors have been correlated with the volatile and phenolic profiles, respectively. Each olfactory descriptor was correlated via a PCR model to the volatile compounds, whereas a comprehensive PLS2 regression model was built for the correlation between visual/gustatory descriptors and the phenolic fingerprint. “Apple” was the olfactory descriptor best modelled by PCR, with an adjusted R2 of 0.72, with only 20% of the validation samples falling out of the confidence interval (α = 95%). A PLS2 with 6 factors was chosen as the best model for gustatory and visual descriptors related to the phenolic compounds. Finally, the overall quality judgment could be explained by a combination of the calibrated sensory descriptors through a PLS model. This allowed the identification of sensory descriptors such as “olfactory intensity”, “warmness”, “apple”, “saltiness”, “astringency”, “cleanness”, “clarity” and “pear”, which relevantly contributed to the overall quality of Pinot Blanc wines from South Tyrol, obtained with two different winemaking processes and aged in bottle for 18 months.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Guillaume Hans ◽  
Bruce Allison

Abstract Historically, on-line and real-time measurement of wood chip properties in the pulp and paper industry has been a challenge and has hampered the development of advanced process control strategies. In this study, visible and near-infrared (VIS-NIR) spectroscopy is investigated as a means to characterize wood chip brightness and chemical composition (i.e. extractives, lignin and holocellulose content) on-line. The estimated standard error on the holocellulose reference measurement was significantly reduced using data reconciliation. VIS-NIR calibration models were developed using partial least square regression. Derivative and baseline correction were found to be the most appropriate pre-processing methods. Model desensitization to the influence of moisture content and temperature by means of external parameter orthogonalization resulted in more robust models critical for on-line applications under harsh industrial conditions. Wavelength selection improved model accuracy for all properties. A comparison of two different spectrometer and probe combinations demonstrated that, after wavelengths selection, a non-contact measurement of wood chips performs as well as a contact measurement of wood powder for monitoring chemical composition. On-line prediction of wood chip brightness and chemical composition using the developed VIS-NIR models was demonstrated over 7 months in a kraft pulp mill processing both hardwood and softwood chips.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Dan Peng ◽  
Yali Liu ◽  
Jiasheng Yang ◽  
Yanlan Bi ◽  
Jingnan Chen

The rapid and accurate detection of the moisture content is of great significance to the quality evaluation and oil extraction process of walnut kernel. Near-infrared (NIR) spectroscopy is an ideal method for measuring the moisture content in walnut kernel. In this study, a regression model for moisture content in walnut kernel was developed based on NIR diffuse reflectance spectroscopy using chemometric methods. The different spectral pretreatment methods were adopted to preprocess the original spectral data. The whole spectra band was divided into 5 subbands, 10 subbands, 15 subbands, and 20 subbands to screen specific wavelengths relevant to the walnut kernel moisture content. PLS (partial least square regression), MLR (multivariate linear regression), PCR (principle component regression), and SVR (support vector regression) were used to establish the relationship model between the spectral data and measurement values of the moisture content. In comparison, the optimized modeling conditions were determined as follows: detection wavelength 1349–1490 nm, SNV-FD (standard normal variate transformation and first derivative) preprocessing method, and PLS algorithm. Under these conditions, the square correlation coefficient (R2) and root mean square error of prediction (RMSEP) of the prediction model were 0.9865 and 0.0017, respectively. The results of this study provided a feasible method for the rapid detection of moisture content in walnut kernel. To improve the performance and applicability of the model, it is necessary to continuously expand the size of the sample set.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1529
Author(s):  
Dilafruz N. Jamalova ◽  
Haidy A. Gad ◽  
Davlat K. Akramov ◽  
Komiljon S. Tojibaev ◽  
Nawal M. Al Musayeib ◽  
...  

The chemical composition of the essential oils obtained from the aerial parts of four Apiaceae species, namely Elaeosticta allioides (EA), E. polycarpa (EP), Ferula clematidifolia (FC), and Hyalolaena intermedia (HI), were determined using gas chromatography. Altogether, 100 volatile metabolites representing 78.97, 81.03, 85.78, and 84.49% of the total components present in EA, EP, FC, and HI oils, respectively, were reported. allo-Ocimene (14.55%) was the major component in FC, followed by D-limonene (9.42%). However, in EA, germacrene D (16.09%) was present in a high amount, while heptanal (36.89%) was the predominant compound in HI. The gas chromatographic data were subjected to principal component analysis (PCA) to explore the correlations between these species. Fortunately, the PCA score plot could differentiate between the species and correlate Ferula to Elaeosticta species. Additionally, the antioxidant activity was evaluated in vitro using the 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), and the ferric reducing power (FRAP) assays. In addition, the antimicrobial activity using the agar diffusion method was assessed, and the minimum inhibitory concentrations (MICs) were determined. Furthermore, the cell viability MTT assay was performed to evaluate the cytotoxicity of the essential oils against hepatic (HepG-2) and cervical (HeLa) cancer cell lines. In the DPPH assay, FC exhibited the maximum activity against all the antioxidant assays with IC50 values of 19.8 and 23.0 μg/mL for the DPPH and ABTS assays, respectively. Ferula showed superior antimicrobial and cytotoxic activities as well. Finally, a partial least square regression model was constructed to predict the antioxidant capacity by utilizing the metabolite profiling data. The model showed excellent predictive ability by applying the ABTS assay.


2021 ◽  
Vol 6 (3) ◽  
pp. 47-54
Author(s):  
Helena A. J. Jayaselan ◽  
Wan I. W. Ismail ◽  
Abdul R. M. Shariff ◽  
Nazmi M. Nawi

In order to reduce excessive fertiliser application, a non-destructive method of spectral data acquisition using spectroradiometer with wavelet analysis was explored to determine the level of nutrients in the oil palm leaves. In spectral data analysis, wavelet de-noising (WD) can be applied to remove background noises and other disturbances such as scattered light that may affect the results of data. Therefore, this study aims to determine and evaluate the best combination of parameters for WD, with respect to nutrients nitrogen (N), phosphorus (P) and potassium (K). These nutrients were studied for three age groups of immature, mature, and old palms. The results were evaluated based on the highest value of coefficient of determination (R2) and lowest root mean square error (RMSE) of partial least square regression (PLSR) analysis. The prediction of nutrient content correlation was found to have tremendous improvement using the proposed technique when compared to the original spectra, with highest prediction R2 value of 0.99 for K of mature palms, 0.97 for N of immature palms and 0.95 for P of mature palms. The results of WD for nutrients prediction were found to be better than results from chemometric method of namely multiplicative scatter correction (MSC). It was observed that for each nutrient type and palm maturity level, there were different combination of parameters based on the highest R2 value that best suited them. Therefore, spectroradiometer assisted with optimal wavelet de-noising parameters gives excellent relationship between spectral data and nutrients N, P, and K.


2021 ◽  
Vol 13 (4) ◽  
pp. 641
Author(s):  
Gopal Ramdas Mahajan ◽  
Bappa Das ◽  
Dayesh Murgaokar ◽  
Ittai Herrmann ◽  
Katja Berger ◽  
...  

Conventional methods of plant nutrient estimation for nutrient management need a huge number of leaf or tissue samples and extensive chemical analysis, which is time-consuming and expensive. Remote sensing is a viable tool to estimate the plant’s nutritional status to determine the appropriate amounts of fertilizer inputs. The aim of the study was to use remote sensing to characterize the foliar nutrient status of mango through the development of spectral indices, multivariate analysis, chemometrics, and machine learning modeling of the spectral data. A spectral database within the 350–1050 nm wavelength range of the leaf samples and leaf nutrients were analyzed for the development of spectral indices and multivariate model development. The normalized difference and ratio spectral indices and multivariate models–partial least square regression (PLSR), principal component regression, and support vector regression (SVR) were ineffective in predicting any of the leaf nutrients. An approach of using PLSR-combined machine learning models was found to be the best to predict most of the nutrients. Based on the independent validation performance and summed ranks, the best performing models were cubist (R2 ≥ 0.91, the ratio of performance to deviation (RPD) ≥ 3.3, and the ratio of performance to interquartile distance (RPIQ) ≥ 3.71) for nitrogen, phosphorus, potassium, and zinc, SVR (R2 ≥ 0.88, RPD ≥ 2.73, RPIQ ≥ 3.31) for calcium, iron, copper, boron, and elastic net (R2 ≥ 0.95, RPD ≥ 4.47, RPIQ ≥ 6.11) for magnesium and sulfur. The results of the study revealed the potential of using hyperspectral remote sensing data for non-destructive estimation of mango leaf macro- and micro-nutrients. The developed approach is suggested to be employed within operational retrieval workflows for precision management of mango orchard nutrients.


2021 ◽  
Vol 11 (2) ◽  
pp. 618
Author(s):  
Tanvir Tazul Islam ◽  
Md Sajid Ahmed ◽  
Md Hassanuzzaman ◽  
Syed Athar Bin Amir ◽  
Tanzilur Rahman

Diabetes is a chronic illness that affects millions of people worldwide and requires regular monitoring of a patient’s blood glucose level. Currently, blood glucose is monitored by a minimally invasive process where a small droplet of blood is extracted and passed to a glucometer—however, this process is uncomfortable for the patient. In this paper, a smartphone video-based noninvasive technique is proposed for the quantitative estimation of glucose levels in the blood. The videos are collected steadily from the tip of the subject’s finger using smartphone cameras and subsequently converted into a Photoplethysmography (PPG) signal. A Gaussian filter is applied on top of the Asymmetric Least Square (ALS) method to remove high-frequency noise, optical noise, and motion interference from the raw PPG signal. These preprocessed signals are then used for extracting signal features such as systolic and diastolic peaks, the time differences between consecutive peaks (DelT), first derivative, and second derivative peaks. Finally, the features are fed into Principal Component Regression (PCR), Partial Least Square Regression (PLS), Support Vector Regression (SVR) and Random Forest Regression (RFR) models for the prediction of glucose level. Out of the four statistical learning techniques used, the PLS model, when applied to an unbiased dataset, has the lowest standard error of prediction (SEP) at 17.02 mg/dL.


Sign in / Sign up

Export Citation Format

Share Document