Lignin-based polymers

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Fan Qi ◽  
Zhang Chaoqun ◽  
Yang Weijun ◽  
Wang Qingwen ◽  
Ou Rongxian

Abstract On the basis of the world’s continuing consumption of raw materials, there was an urgent need to seek sustainable resources. Lignin, the second naturally abundant biomass, accounts for 15–35% of the cell walls of terrestrial plants and is considered waste for low-cost applications such as thermal and electricity generation. The impressive characteristics of lignin, such as its high abundance, low density, biodegradability, antioxidation, antibacterial capability, and its CO2 neutrality and enhancement, render it an ideal candidate for developing new polymer/composite materials. In past decades, considerable works have been conducted to effectively utilize waste lignin as a component in polymer matrices for the production of high-performance lignin-based polymers. This chapter is intended to provide an overview of the recent advances and challenges involving lignin-based polymers utilizing lignin macromonomer and its derived monolignols. These lignin-based polymers include phenol resins, polyurethane resins, polyester resins, epoxy resins, etc. The structural characteristics and functions of lignin-based polymers are discussed in each section. In addition, we also try to divide various lignin reinforced polymer composites into different polymer matrices, which can be separated into thermoplastics, rubber, and thermosets composites. This chapter is expected to increase the interest of researchers worldwide in lignin-based polymers and develop new ideas in this field.

2021 ◽  
Author(s):  
Junzhen Ren ◽  
Pengqing Bi ◽  
Jianqi Zhang ◽  
Jiao Liu ◽  
Jingwen Wang ◽  
...  

Abstract Developing photovoltaic materials with simple chemical structures and easy synthesis still remains a major challenge in the industrialization process of organic solar cells (OSCs). Herein, an ester substituted poly(thiophene vinylene) derivative, PTVT-T, was designed and synthesized in very few steps by adopting commercially available raw materials. The ester groups on the thiophene units enable PTVT-T to have a planar and stable conformation. Moreover, PTVT-T presents a wide absorption band and strong aggregation effect in solution, which are the key characteristics needed to realize high performance in non-fullerene-acceptor (NFA)-based OSCs. We then prepared OSCs by blending PTVT-T with three representative fullerene- and NF-based acceptors, PC71BM, IT-4F and BTP-eC9. It was found that PTVT-T can work well with all the acceptors, showing great potential to match new emerging NFAs. Particularly, a remarkable power conversion efficiency of 16.20% is achieved in a PTVT-T:BTP-eC9-based device, which is the highest value among the counterparts based on PTV derivatives. This work demonstrates that PTVT-T shows great potential for the future commercialization of OSCs.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1873
Author(s):  
Petronela Pascariu ◽  
Niculae Olaru ◽  
Aurelian Rotaru ◽  
Anton Airinei

A new type of material based on carbon/ZnO nanostructures that possesses both adsorption and photocatalytic properties was obtained in three stages: cellulose acetate butyrate (CAB) microfiber mats prepared by the electrospinning method, ZnO nanostructures growth by dipping and hydrothermal methods, and finally thermal calcination at 600 °C in N2 for 30 min. X-ray diffraction (XRD) confirmed the structural characteristics. It was found that ZnO possesses a hexagonal wurtzite crystalline structure. The ZnO nanocrystals with star-like and nanorod shapes were evidenced by scanning electron microscopy (SEM) measurements. A significant decrease in Eg value was found for carbon/ZnO hybrid materials (2.51 eV) as compared to ZnO nanostructures (3.21 eV). The photocatalytic activity was evaluated by studying the degradation of three dyes, Methylene Blue (MB), Rhodamine B (RhB) and Congo Red (CR) under visible-light irradiation. Therefore, the maximum color removal efficiency (both adsorption and photocatalytic processes) was: 97.97% of MB (C0 = 10 mg/L), 98.34% of RhB (C0 = 5 mg/L), and 91.93% of CR (C0 = 10 mg/L). Moreover, the value of the rate constant (k) was found to be 0.29 × 10−2 min−1. The novelty of this study relies on obtaining new photocatalysts based on carbon/ZnO using cheap and accessible raw materials, and low-cost preparation techniques.


2018 ◽  
Vol 25 (5) ◽  
pp. 957-961 ◽  
Author(s):  
Kaiyue Wang ◽  
Huijun Wang ◽  
Yi Zhou ◽  
Guomin Li ◽  
Yaqiao Wu ◽  
...  

AbstractIn this study, the mullite-quartz-based proppants were successfully prepared by using the coal gangue as the raw materials. Then, the effects of the additive and the sintering temperature on the composition, microstructure, and properties of the proppants were investigated. Results showed that the proppants sintered at 1250°C with the 10 wt% bauxite additive presented the best performance, which was very close to that of the quartz-proppant, and met the operational requirements of the 52 MPa coal bed methane wells. The viscous flow mechanism of the liquid phase formed during the sintering process also promoted the arrangement of the grains, thus benefiting the densification and the strength of the proppants.


2020 ◽  
Vol 10 (18) ◽  
pp. 6222 ◽  
Author(s):  
Girts Bumanis ◽  
Jelizaveta Zorica ◽  
Diana Bajare

The potential of phosphogypsum (PG) as secondary raw material in construction industry is high if compared to other raw materials from the point of view of availability, total energy consumption, and CO2 emissions created during material processing. This work investigates a green hydraulic ternary system binder based on waste phosphogypsum (PG) for the development of sustainable high-performance construction materials. Moreover, a simple, reproducible, and low-cost manufacture is followed by reaching PG utilization up to 50 wt.% of the binder. Commercial gypsum plaster was used for comparison. High-performance binder was obtained and on a basis of it foamed lightweight material was developed. Low water-binder ratio mixture compositions were prepared. Binder paste, mortar, and foamed binder were used for sample preparation. Chemical, mineralogical composition and performance of the binder were evaluated. Results indicate that the used waste may be successfully employed to produce high-performance binder pastes and even mortars with a compression strength up to 90 MPa. With the use of foaming agent, lightweight (370–700 kg/m3) foam concrete was produced with a thermal conductivity from 0.086 to 0.153 W/mK. Water tightness (softening coefficient) of such foamed material was 0.5–0.64. Proposed approach represents a viable solution to reduce the environmental footprint associated with waste disposal.


Nanoscale ◽  
2014 ◽  
Vol 6 (24) ◽  
pp. 15066-15072 ◽  
Author(s):  
Yuanyuan Jiang ◽  
Yizhong Lu ◽  
Xiaodan Wang ◽  
Yu Bao ◽  
Wei Chen ◽  
...  

Effective preparation of a high-performance non-precious metal oxygen reduction electrocatalyst (a Co–N complex on 3D N-doped graphene) by a facile method from low-cost raw materials.


MRS Bulletin ◽  
1987 ◽  
Vol 12 (7) ◽  
pp. 25-28
Author(s):  
Robert J. Eagan

Until the 1980s, most people thought of ceramics as artware and artifacts. The recent development of advanced ceramics for high performance thermal insulation (space shuttle tiles), high temperature structures (heat engines), and electronics (superconductors) has dramatically changed perceptions about the utility of ceramics.High technology ceramics are related to “traditional” ceramics only to the extent that they are inorganic, nonmetallic materials. Traditional ceramics are derived from minerals. For example, dinnerware and bricks consist mostly of clay, while sand is the major ingredient in flat glass and containers. Abundant raw materials, simple processing, adequate performance at low cost, and technological evolution have kept these industries viable for several thousand years.But, for demanding electronic or structural applications, synthesizing ceramics from minerals is often unacceptable. The chemical variability of mineral deposits, the difficulty of obtaining a homogeneous mixture of powders, and the problems of consolidating the powders into a uniform ceramic with desirable grain morphology, chemistry and grain boundary phases have stimulated the development of chemically derived ceramic precursors.


2016 ◽  
Vol 848 ◽  
pp. 99-102 ◽  
Author(s):  
Theerapong Santhaveesuk ◽  
Kwunta Siwawongkasem ◽  
Siriwimon Pommek ◽  
Supab Choopun

ZnO nanoparticles were successfully synthesized by a low cost co-precipitation method using zinc nitrate and sodium hydroxide as the raw materials. It was observed that the synthesized temperatures greatly effect on the size of ZnO nanoparticles. The lower synthesized temperatures resulted in the smaller nanoparticles. By adjusting the mole ratio of sodium hydroxide, the size of ZnO nanoparticles was also changed. The smallest ZnO particles was 47 nm obtained with 0.7 mole of sodium hydroxide. The smallest ZnO nanoparticles from each synthesized temperatures were fabricated as humidity sensor, showing an impressive performance under different relative humidity (17-94% RH). It should be noticed that the ZnO nanoparticles humidity sensor synthesized at 75 °C exhibited high response for 2 times higher than that of synthesized at 95 °C. This is attributed to the higher surface area of ZnO nanoparticles for absorbed water molecule.


Author(s):  
M. Sathish ◽  
R. Aravindhan ◽  
J. Raghava Rao

Chromium tanning finds a prominant place in leather manufacturing for permanent stabilization of hide/skin matrix. Though, it has multiple advantages in terms of high thermal stability, easy process and low cost etc., the current practice is not environmentally sustainable. Poor chromium exhaustion and TDS load generation are the major environmental threats of conventional chromium tanning systems. On the other hand, salt-free chromium tanning is identified as one of the efficient alternative approaches for hide/skin matrix stabilization. However, it has not been commercially practiced due to the several practical difficulties. In this work attempts have been made to develop a practically viable high-performance salt-free chromium tanning system using deliming liquor as tanning float and changing the order of addition of masking salt. The developed methodologies completely avoid the use of salt/basification process and it is suitable for all kinds of raw materials and tannery houses. Besides, the process enjoys 71-77% reduction in TDS load and the uptake of chromium is around 90%. The physical strength characteristics are on par with conventional process and the leathers exhibit good grain tightness and roundness. The developed methodologies are simple and do not require any specialty chemicals.     


2014 ◽  
Vol 488-489 ◽  
pp. 98-101
Author(s):  
Ju Wei Wang

Polyurethane (referred to as PU) is a polymer made from polyisocyanate and a polyether polyol or polyester polyol and small molecule polyol, polyamine or water chain extenders or crosslinking agent, such as raw materials. By changing the type of material and composition, you can dramatically change the form of products and their performance, the final product from soft to hard. Lignin, a natural renewable resources, natural aromatic polymer has a hydroxyl-containing three-dimensional structural characteristics, the research and application has become increasingly active. The introduction of the lignin in the material, not only can improve the performance of the material but also reduce costs, resulting in considerable economic benefits. If we can combine the two advantages of the manufacture of composite materials to become a demand. The subjects explored the impact of the alkali lignin waste polyurethane foam and curing agent on the performance of the polyurethane foam through experiments that the above factors, the ratio of the manufacture of polyurethane foam: phenolic resin 250g, adding emulsifier 30g, foamagent alkali lignin 40g, waste polyurethane 30g, hardener 100g from the foam strength of 380KPa and low cost.


2010 ◽  
Vol 93 (5) ◽  
pp. 1349-1354 ◽  
Author(s):  
Roy T Upton

Abstract TLC characterizations are among the key identity tests in most pharmacopoeial monographs. Pharmacopoeial standards are typically used by industry as a basis for meeting QC requirements and current good manufacturing practices (cGMPs). TLC is a relatively low-cost, highly versatile tool for developing specifications for raw materials, as well as for the various preparations for which pharmacopoeial standards are created. In addition to its use in the development of identity tests, TLC is a valuable tool for screening plant samples that pharmacopoeias must review in the development of monographs and botanical reference materials (BRMs). Specifically, HPTLC is the ideal TLC technique for these purposes because of its increased accuracy, reproducibility, and ability to document the results, compared with standard TLC. Because of this, HPTLC technologies are also the most appropriate TLC technique for conformity with GMPs. This article highlights the manner in which HPTLC is used by the American Herbal Pharmacopoeia (AHP) in the development of AHP monograph identity standards, the identification of adulterating species, and the development of AHP-verified BRMs.


Sign in / Sign up

Export Citation Format

Share Document