scholarly journals Malondialdehyde levels can be measured in serum and saliva by using a fast HPLC method with visible detection / Determinarea printr-o metodă HPLC-VIS rapidă a concentraţiilor serice şi salivare ale malondialdehidei

2016 ◽  
Vol 24 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Erzsébet Fogarasi ◽  
Mircea Dumitru Croitoru ◽  
Ibolya Fülöp ◽  
Enikő Nemes-Nagy ◽  
Robert Gabriel Tripon ◽  
...  

Abstract Oxidative stress appears when the amount of free radicals that are formed in a living organism exceed its spin-trapping ability. One of the most dangerous free radicals that are formed in the human body is the hydroxyl radical. It can alter several biomolecules, including the unsaturated fatty acids; this process is known as lipid peroxidation and can lead to cell necrosis and generation of several harmful byproducts including malondialdehyde, which serves also as a biomarker of oxidative stress. A new HPLC method with visible detection was developed for the detection of malondialdehyde in human serum and saliva samples. The method was verified in terms of specificity, linearity, limits of detection (0.35 ng/ml), limit of quantification (1.19 ng/ml), recovery (90.13±10.25 – 107.29±14.33) and precision (3.84±1.49% – 6.66±1.76%). An analysis time of only 1 minute was obtained and no interferences from the matrices were observed. Statistical analysis (Pearson correlation test) showed a moderate correlation (R = 0.5061, p = 0.0099) between serum and saliva concentrations (N = 25). The possibility of measuring salivary concentrations of malondialdehyde extents the applications of oxidative stress/lipid peroxidation estimations to categories of population unreachable before (pregnant women, small children, etc); repeated sample studies are also easier to make.

Author(s):  
Fasna K. A. ◽  
Geetha N. ◽  
Jean Maliekkal

Background: Ageing is characterized by a gradual decline in body functions and decreased ability to maintain homeostasis. The free radical theory of ageing proposed by Harman D states that ageing is a result of cumulative damage incurred by free radical reactions. Free radicals are highly reactive molecular species with unpaired electrons; generated in the body by several physiological processes. Prime target to free radical attack are the polyunsaturated fatty acids of cell membranes causing lipid peroxidation. The free radicals are neutralized by the exogenous and endogenous antioxidant systems. Oxidative stress occurs when large number of free radicals are produced or the antioxidant activity is impaired. The present study is focused to find out the role of oxidative stress in ageing.Methods: A cross sectional observational study was undertaken to assess the oxidative stress in ageing; by determining the levels of lipid peroxidation product- malondialdehyde (MDA), the antioxidants- superoxide dismutase (SOD) and ceruloplasmin in various age groups. 150 healthy subjects were selected randomly and categorised into three different age groups of 20-30 years, 40-59 years and 60-90 years; with 50 subjects in each group. Results were expressed as mean ± standard deviation.Results: a significant elevation in serum MDA level and a decline in SOD were observed in 40-59 years and 60-90 years age groups. However, an elevated ceruloplasmin level was found in the above age groups.Conclusions: Aforementioned observations are suggestive of an association between oxidative stress and the progression of ageing process.


2016 ◽  
Vol 19 (2) ◽  
pp. 371-378 ◽  
Author(s):  
A. Spodniewska ◽  
D. Barski

Abstract The aim of the study was to determine the level of antioxidant vitamins A and E in the liver of rats exposed to chlorpyrifos and/or enrofloxacin. Chlorpyrifos (Group I) was administered at a dose of 0.04 LD50 (6 mg/kg b.w.) for 28 days, and enrofloxacin (Group II) at a dose of 5 mg/kg b.w. for 5 consecutive days. The animals of group III were given both of the mentioned above compounds at the same manner as groups I and II, but enrofloxacin was applied to rats for the last 5 days of chlorpyrifos exposure (i.e. on day 24, 25, 26, 27 and 28). Chlorpyrifos and enrofloxacin were administered to rats intragastrically via a gastric tube. The quantitative determination of vitamins was made by the HPLC method. The results of this study indicated a reduction in the hepatic concentrations of vitamins A and E, compared to the control, which sustained for the entire period of the experiment. The four-week administration of chlorpyrifos to rats resulted in a significant decrease of vitamins in the initial period of the experiment, i.e. up to 24 hours after exposure. For vitamin A the maximum drop was observed after 24 hours (19.24%) and for vitamin E after 6 hours (23.19%). Enrofloxacin caused a slight (3-9%) reduction in the level of the analysed vitamins. In the chlorpyrifos-enrofloxacin co-exposure group reduced vitamins A and E levels were also noted, but changes in this group were less pronounced in comparison to the animals intoxicated with chlorpyrifos only. The decrease in the antioxidant vitamin levels, particularly noticeable in the chlorpyrifos- and the chlorpyrifos combined with enrofloxacin-treated groups, may result not only from the increase in the concentration of free radicals, but also from the intensification of the secondary stages of lipid peroxidation.


1999 ◽  
Vol 7 (1) ◽  
pp. 31-51 ◽  
Author(s):  
Klara D Vichnevetskaia ◽  
D N Roy

Increased levels of active oxygen species or free radicals can create an oxidative stress. Concentration of free radicals in living cells increases as a result of exposure to environmental stresses that lead to aging, carcinogenesis, and immunodeficiencies in animals, and membrane leakage, senescence, chlorophyll destruction, and decreased photosynthesis in plants. The antioxidative system of higher plants consists of enzymes, low molecular weight compounds (among them peptides, vitamins, flavonoids, phenolic acids, alkaloids, etc.), and integrated detoxification chains. Enzymatic defense in plants include enzymes capable of removing, neutralizing, or scavenging oxy-intermediates. Catalases and superoxide dismutases are the most efficient antioxidant enzymes. Free radicals cause cell damage by a lipid peroxidation mechanism, which results in a blockade of natural antioxidant systems. Application of synthetic antioxidants can assist in coping with oxidative stress. There are very few publications on effects of synthetic antioxidants on plant growth and physiology. One of the examples of such synthetic antioxidant is 2-methyl-4-dimethylaminomethyl-5-hydroxybenzimidazole (Ambiol), which substantially promoted growth of agricultural and forestry plant species. Ambiol also demonstrated antitranspirant properties, increasing drought tolerance of conifers and agricultural species. The response of plants to Ambiol is under high genetic control. The identification of genes responsible for the reaction of plants to Ambiol may lead to attempts in genetic engineering of organisms with increased tolerance to oxidative stress. It seems impossible to find a universal scavenger trapping all free radicals active in the organism. However, analysis of the structure–activity relationships in antioxidants can contribute to the search for effective antioxidants.Key words: oxidative stress, lipid peroxidation, free radicals, natural and synthetic antioxidants, Ambiol.


2016 ◽  
Vol 37 (3) ◽  
pp. 1431 ◽  
Author(s):  
Claudia Russo ◽  
Ana Paula F. Rodrigues Loureiro Bracarense

Reactive oxygen species (ROS), also known as free radicals, are generated during cellular respiration. Under normal conditions, the body has the ability to neutralize the effects of free radicals by using its antioxidant defenses. In the case of an imbalance between oxidants and antioxidants, free radical production exceeds the capacity of organic combustion, resulting in oxidative stress. Of all the cellular components compromised by the harmful effects of ROS, the cell membrane is the most severely affected owing to lipid peroxidation, which invariably leads to changes in the membrane structure and permeability. With lipid peroxidation of the cell membrane, some by-products can be detected and measured in tissues, blood, and other bodily fluids. The measurement of biomarkers of oxidative stress is commonly used to quantify lipid peroxidation of the cell membrane in humans, a species in which ROS can be considered as a cause or consequence of oxidative stress-related diseases. In dogs, few studies have demonstrated this correlation. The present review aims to identify current literature knowledge relating to oxidative stress diseases and their detection in dogs.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Frenky D. Awuy ◽  
Diana S. Purwanto ◽  
Yanti M. Mewo

Abstract: Cigarettes can cause oxidative stress that may cause various health problems such as the decrease of spermatozoa quality. The disturbed state of  spermatozoa results in a decrease quality of the spermatozoa which may effect fertility. Vitamin C is an antioxidant which is believed to affect improving the quality of spermatozoa. This study aimed to determine the effect of vitamin C on the quality of spermatoza exposed to cigarette smoke. This research was conducted by literature review using three databases, namely Google Scholar, Pubmed, and ClinicalKey. After being selected based on inclusion and exclusion criteria, there were 10 articles research for assessment. The results show that the decrease in spermatozoa concentration is due to the nicotine contained in cigarette smoke. By giving vitamin C, it can reduce oxidative stress which can cause lipid peroxidation, and then reduce the decrease in spermatozoa concentration. There is also an improvement in spermatozoa motility and morphology after vitamin C administration. Vitamin C as an antioxidant plays a role in fighting free radicals, so that the spermatozoa cell membrane remains protected. In conclusion, consumption of vitamin C shows an effect to improve the quality of spermatozoa exposed to cigarette smoke, including increasing/improving the concentration, morphology, and motility of spermatozoa.Keywords: vitamin C, spermatozoa, smoker  Abstrak: Rokok menyebabkan terjadinya stres oksidatif yang dapat mengakibatkan berbagai gangguan kesehatan seperti penurunan kualitas spermatozoa. Keadaan spermatozoa yang terganggu mengakibatkan penurunan kualitas spermatozoa sehingga akan memengaruhi kesuburan. Vitamin C merupakan antioksidan yang dipercaya dapat memengaruhi peningkatan kualitas spermatozoa. Penelitian ini bertujuan untuk mengetahui pengaruh pemberian vitamin C terhadap kualitas spermatoza yang terpapar asap rokok. Penelitian ini berbentuk literature review dengan pencarian data menggunakan tiga database yaitu Google Scholar, Pubmed, dan ClinicalKey. Setelah diseleksi berdasarkan kriteria inklusi dan eksklusi, didapatkan 10 artikel untuk dilakukan penilaian. Hasil penelitian menunjukkan bahwa penurunan konsentrasi spermatozoa disebabkan oleh kandungan nikotin dalam asap rokok. Pemberian vitamin C dapat menurunkan stres oksidatif yang dapat menyebabkan terjadinya peroksidasi lipid, kemudian menekan penurunan konsentrasi spermatozoa. Terdapat juga perbaikan motilitas dan morfologi spermatozoa setelah pemberian vitamin C. Vitamin C sebagai antioksidan berfungsi untuk menanggulangi radikal bebas, sehingga membran sel spermatozoa akan tetap terlindungi. Sebagai simpulan, pemberian vitamin C menunjukkan adanya pengaruh untuk meningkatkan kualitas spermatozoa yang terpapar asap rokok, meliputi peningkatan/perbaikan konsentrasi, morfologi, dan motilitas spermatozoa.Kata kunci: vitamin C, spermatozoa, asap rokok


Author(s):  
Ria S Pane ◽  
Syahril R Lubis ◽  
Mila Darmi

Background: Leprosy is a chronic disease caused by Mycobacterium leprae. Oxidative stress (OS) is a condition associated with an increased rate of celluler damage induced by the oxygen derived oxidants commonly known as reactive oxygen species (ROS). ROS are capable of damaging celluler constituen generated in excess during the chronic, inflammatory, and neurodegenerative disease process of leprosy. Malondialdehyde (MDA) is end product of lipid peroxidation by ROS and serves as marker of celluler damage. Aim: To analyse the diference of MDA level in Paucibacillary (PB) and Multibacillary (MB) leprosy. Methods: 17 new cases of leprosy patients that were diagnosed by clinical and laboratory examinations. We conducted blood samplings and measurements of plasma MDA level with HPLC method. Results: In this study, there was increased the mean of MDA level in MB compared with PB and significant statistically (p<0, 05). Conclusion: Tissue damage due to OS in leprosy patients is more severe in MB group than PB group


2009 ◽  
Vol 25 (8) ◽  
pp. 545-550 ◽  
Author(s):  
Ismail Karabulut ◽  
Z. Dicle Balkanci ◽  
Bilge Pehlivanoglu ◽  
Aysen Erdem ◽  
Ersin Fadillioglu

Toluene, an organic solvent used widely in the industry, is highly lipophilic and accumulates in the cell membrane impeding transport through it. Its metabolites cause oxygen radical formation that react with unsaturated fatty acids and proteins in erythrocytes leading to lipid peroxidation and protein breakdown. In this study, we aimed to investigate the membrane stabilizing and the oxidative stress—inducing effects of toluene in human erythrocytes. Measurements of osmotic fragility, mean corpuscular volume (MCV), oxidative stress parameters and antioxidant enzyme activities were performed simultaneously both in individuals exposed to toluene professionally (in vivo) and human erythrocytes treated with toluene (in vitro). To measure osmotic fragility, erythrocytes were placed in NaCl solutions at various concentrations (0.1% [blank], 0.38%, 0.40%, 0.42%, 0.44%, 0.46%, 0.48% and 1% [stock]). Percentage of haemolysis in each solution was calculated with respect to the 100% haemolysis in the blank solution. The erythrocyte packs prepared at the day of the above-mentioned measurements were kept at —80°C until the time for determination of malonyldialdehyde and protein carbonyl levels, and catalase (CAT) and glutathione peroxidase activities as indicators of oxidative stress. Toluene increased oxidative stress parameters significantly both in vivo and in vitro; it also caused a significant decrease in the activities of antioxidant enzymes. Osmotic fragility was altered only in the case of in vitro exposure. In conclusion, toluene exposure resulted in increased lipid peroxidation and protein damage both in vivo and in vitro. Although, it is natural to expect increased osmotic fragility due to oxidative properties of toluene, its membrane-stabilizing effect overcame the oxidative properties leading to decreased osmotic fragility or preventing its deterioration in vitro and in vivo toluene exposures, respectively, in the present study.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1185
Author(s):  
Nadia Gruber ◽  
Liliana Orelli ◽  
Cristina Minnelli ◽  
Luca Mangano ◽  
Emiliano Laudadio ◽  
...  

The potential of nitrones (N-oxides) as therapeutic antioxidants is due to their ability to counteract oxidative stress, mainly attributed to their action as radical scavengers toward C- and O-centered radicals. Among them, nitrones from the amidinoquinoxaline series resulted in interesting derivatives, due to the ease with which it is possible to introduce proper substituents within their structure in order to modulate their lipophilicity. The goal is to obtain lipophilic antioxidants that are able to interact with cell membranes and, at the same time, enough hydrophilic to neutralize those radicals present in a water compartment. In this work, the antioxidant efficacy of a series of amidinoquinoxaline nitrones has been evaluated regarding the oxidation of 2-deoxyribose and lipid peroxidation. The results have been rationalized on the basis of the different possible mechanisms involved, depending on some of their properties, such as lipophilicity, the ability to scavenge free radicals, and to undergo single electron transfer (SET) reactions.


2003 ◽  
Vol 22 (4) ◽  
pp. 205-211 ◽  
Author(s):  
Maryam Akhgari ◽  
Mohammad Abdollahi ◽  
Abbas Kebryaeezadeh ◽  
Ruhollah Hosseini ◽  
Omid Sabzevari

Organophosphorus compounds may induce oxidative stress leading to generation of free radicals and alterations in antioxidant and scavengers of oxygen free radicals (OFRs). The effect of subchronic exposure to malathion in the production of oxidative stress was evaluated in male Wistar rats. Administration of malathion (100, 316, 1000, 1500 ppm) for 4 weeks increased catalase (CAT), superoxide dismutase (SOD) activities as well as malondialdehyde (MDA) concentration in red blood cells (RBC) and liver. However, acetylcholinesterase (AChE) and cholinesterase (ChE) activities were decreased in these samples. The increase in RBC and liver lipid peroxidation correlated well with the inhibition in RBC AChE and liver ChE activities. Elevation of MDA concentrations and increased activities of CAT and SOD showed significant correlations in both RBC and liver samples when different doses of malathion were used. The results of the present study suggest the usefulness of RBC AChE measurement as a good biomarker in the estimation of malathion-induced oxidative stress affecting blood and liver.


Sign in / Sign up

Export Citation Format

Share Document