The effects of crocin (active contstituent of saffron) treatment on brain antioxidant enzyme mRNA levels in diabetic rats / Diyabetik ratlarda safranın aktif içeriği olan krosin tedavisinin beyindeki antioksidan enzimlerin mRNA seviyeleri üzerine etkisi

2016 ◽  
Vol 41 (2) ◽  
Author(s):  
Eyüp Altınöz ◽  
Cemal Ekici ◽  
Berna Özyazgan ◽  
Yılmaz Çiğremiş

AbstractObjective: The aim of the present study is to evaluate the effect of crocin on mRNA expression of antioxidant enzymes, SOD, CAT and GPX in the brain of the STZ induced diabetic rats.Methods: Thirty animals randomized in three groups containing ten animals in each group as follows; control (non-diabetic rats), DM (STZ-induced untreated diabetic rats), DM+crocin (STZ-induced diabetic rats treated with crocin,). Crocin was given at a dose of 20 mg/kg bw/day by gavage for 21 days.Results: STZ injection caused a significant increase in mRNA expression of antioxidant enzymes, SOD, CAT and GPX when compared to control group. Crocin given to diabetic rats significantly decreased mRNA expression of antioxidant enzymes, SOD, CAT and GPX when compared to DM group.Conclusion: The present study demonstrates that crocin can modulate mRNA expression of antioxidant enzymes, SOD, CAT and GPX and oxidative stress in the brain of the STZ induced diabetic rats.

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Asma Taheri ◽  
Abdolhamid Habibi ◽  
Saeid Shakerian ◽  
Mohammad Reza Tabandeh ◽  
Masoud Nikbakht

Objectives: Identifying the effective exercise protocol that attenuates the functional and molecular disturbances in different regions of the brain, in particular the cerebellum, can help the proper management of neuropathies in diabetic patients. Methods: Twenty rats were randomly divided into four groups: (1) Normal control group (CON), (2) normal exercise group (TH), (3) diabetes control group (DC), and (4) diabetes exercise group (TD). Diabetes was induced by i.p injection of a single dose of streptozotocin (50 mg/kg). The endurance training protocol was performed on a treadmill for five days a week for six weeks with moderate intensity. The activities of antioxidant enzymes and the expression or release of apoptotic factors were analyzed based on data from rat cerebellum tissue at the end of the experiments. Results: Six weeks of endurance training improved the oxidative defense system by increasing the activities of SOD (from 3.70 ± 0.64 to 6.55 ± 0.56), GPx (from 3.42 ± 0.73 to 4.84 ± 0.62), and catalase (from 1.36 ± 0.23 to 3.59 ± 0.37) and reducing the MDA concentration (from 6.81 ± 1.34 to 4.33 ± 1.03) in the cerebellum of diabetic rats. Increased expression or cytosolic release of apoptotic effectors such as bax, caspase 3, and cytochrome c in the cerebellum of diabetic rats were attenuated following exercise training. Conclusions: Our research results showed that six weeks of endurance training may be helpful for the attenuation of neuropathies in diabetic patients by the attenuation of apoptosis and oxidative stress in the cerebellum.


2021 ◽  
Vol 7 (1) ◽  
pp. 42-50
Author(s):  
Zahra Nazari Barchestani ◽  
◽  
Maryam Rafieirad ◽  

Background: Ischemia causes severe neuronal damage and induces oxidative stress, memory impairment, and reduces pain threshold. Herniarin is a powerful antioxidant. Objectives: This study aimed to evaluate the effect of herniarin on memory, pain, and oxidative stress in an ischemia model in male rats. Materials & Methods: In this study, 50 male rats were divided into 5 groups of control, sham, ischemic, and two other ischemic groups, which received herniarin at doses of 150 and 300 mg/kg by gavage for 14 days. Behavioral tests were performed by shuttle box, and Y-maze and pain tests were performed by Tail-Flick test. Then, the rats’ brains were extracted to evaluate lipid peroxidation and measure the levels of thiol and Glutathione Peroxidase (GPX) in the hippocampus and striatum tissues. The results were expressed as Mean±SEM and then analyzed using suitable statistical methods of ANOVA and least significant difference post-hoc test in SPSS V. 20. Results: Herniarin significantly increased the avoidance memory, spatial memory, and pain thresholds of ischemic rats at different concentrations (P<0.001). Besides, the amount of malondialdehyde (MDA) and thiol in the ischemic group increased significantly in comparison to the control group (P<0.001). Also, in the ischemic group, GPX (P<0.001) significantly decreased. Decreased MDA (P<0.001) and thiol (P<0.001) and increased GPX levels were observed with herniarin administration (P<0.01). Conclusion: According to this study’s results, herniarin can remove free radicals and oxidant substances from the brain. Thus, it improves memory and pain thresholds in the brain hypoperfusion ischemia model.


2016 ◽  
Vol 2016 ◽  
pp. 1-5 ◽  
Author(s):  
Bonaventure Chukwunonso Obi ◽  
Theophine Chinwuba Okoye ◽  
Victor Eshu Okpashi ◽  
Christiana Nonye Igwe ◽  
Edwin Olisah Alumanah

Diabetes mellitus is one of the serious global health problems affecting a significant proportion of both developed and developing countries. Overproduction of free radicals and oxidative stress has been associated with the development of diabetic complications. In the present study, the antioxidant effects of metformin (MET), glibenclamide (GLI), and repaglinide (REP) were evaluated in alloxan-induced diabetic rats. The findings from this study may possibly help in understanding the efficacy of these standard drugs in managing the complications arising from diabetes mellitus (DM). Alloxan (130 mg/kg BW) was administered as a single dose to induce diabetes. Four (4) groups of rats (n=6) were used; group 1 served as diabetic control while groups 2, 3, and 4 were the diabetic test groups that received MET (25 mg/kg), GLI (2.5 mg/kg), and REP (0.5 mg/kg), respectively. The result of the study showed significant (p<0.05) improvement in the altered antioxidant enzymes (SOD, CAT) and GSH concentration in diabetic treated rats compared with the diabetic control group. MET and REP produced significant effect on the MDA concentration while GLI showed insignificant reduction in the MDA concentration compared with the diabetic control. Findings from this study suggest that the administration of MET, GLI, and REP exerts significant antioxidant effects in alloxan-induced diabetic rats, thus contributing to the protective effect against oxidative stress-induced damage during diabetic complications.


2011 ◽  
Vol 30 (10) ◽  
pp. 1626-1634 ◽  
Author(s):  
Amit K Sharma ◽  
Swapan K Bhattacharya ◽  
Naresh Khanna ◽  
Ashok K Tripathi ◽  
Tarun Arora ◽  
...  

Progesterone (a neurosteroid) is an important modulator of the nervous system functioning. Organophosphorus pesticides like phosphamidon have been shown to adversely affect memory and induce oxidative stress on both acute and chronic exposure. The present study was therefore designed to investigate the effects of progesterone (PROG) on phosphamidon-induced modulation of cognitive function and oxidative stress in rats. Cognitive function was assessed using step-down latency (SDL) on a passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in isolated homogenized whole brain samples. The results showed a significant reduction in SDL and prolongation of TL in the phosphamidon (1.74 mg/kg/d; p.o.) treated group at weeks 6 and 8 as compared to the control group. Two weeks treatment with PROG (15 mg/kg/d; i.p.) antagonized the effect of phosphamidon on SDL as well as TL. Phosphamidon alone produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. Treatment with PROG (15 mg/kg/d; i.p.) attenuated the effect of phosphamidon on oxidative stress. Together, the results showed that progesterone attenuated the cognitive dysfunction and increased oxidative stress induced by phosphamidon in the brain.


2020 ◽  
Author(s):  
Chengfeng Miao ◽  
Hanbin Chen ◽  
Yulian Li ◽  
Ying Guo ◽  
Feifei Xu ◽  
...  

Abstract Background: Diabetic encephalopathy is a severe diabetes complication with cognitive dysfunction and neuropsychiatric disability. The mechanisms underlying diabetic encephalopathy is believed to be relevant with oxidative stress, vascular amylin deposition, immune receptors, inflammation, etc. This study wanted to evaluate the ability of curcumin and its analog A13 to alleviate oxidative stress and inflammation in diabetes-induced damages in brain.Methods: Sixty adult male Sprague-Dawley rats were divided into 5 groups: normal control (NC) group, diabetes mellitus (DM) group, curcumin-treated diabetes mellitus (CUR) group, high dose of A13-treated diabetes mellitus (HA) group, low dose of A13-treated diabetes mellitus (LA) group. Activation of the nuclear factor kappa-B (NF-κB p65) pathway was detected by RT-qPCR, immunohistochemical (IHC) staining and Western blot; oxidative stress was detected by biochemical detection kit; brain tissue sections were stained with hematoxylin–eosin (HE) staining and Myelin staining. Results: RT-qPCR, IHC staining and Western blot showed that curcumin and A13 treatment could inhibit the NF-κB p65 pathway. Curcumin and A13 increased the activity of superoxide dismutase and decreased the malondialdehyde level in the brain of diabetic rats. Furthermore, HE staining and Myelin staining demonstrated that the histological lesions of the brain in diabetic rats could be significantly ameliorated by curcumin and A13.Conclusion: Curcumin analog A13 could alleviate the damages in the brain of diabetes rats by regulating the pathways of inflammation and oxidative stress. A13 may be a new potential therapeutic agent for diabetic encephalopathy.


Author(s):  
Ojoye N. Briggs ◽  
Kemzi N. Elechi-amadi ◽  
Justice C. Ohaka ◽  
Edna O. Nwachuku ◽  
Bartimaeus S. Ebirien-agana

Aim: This study evaluated the effects of metformin in combination with a herbal capsule (glucoblock) on insulin resistance and oxidative stress index in type 2 diabetic rats. Methodology: A total of 35 male Wistar albino rats weighing between 120-220 g were used for this study. The rats were placed on high fat diet, and diabetes was induced by a single intraperitoneal injection of freshly prepared streptozotocin (STZ) (45 mg/kg body wt). Fasting plasma glucose (FPG) was determined using the glucose oxidase method. Fasting plasma insulin (FPI), total oxidant status (TOS), total antioxidant status (TAS) and superoxide dismutase (SOD) levels were quantitatively determined by a rat-specific sandwich-enzyme linked immunosorbent assay (ELISA) method. Insulin resistance (IR) was determined using the homeostatic model assessment for insulin resistance (HOMA-IR) method. Oxidative stress index (OSI) was determined by the ratio of TOS to TAS. Phytochemical analysis on the herbal capsule was done using classical methods. Results: The results revealed the presence of alkaloids (100.31μg/mg), flavonoids (131.45μg/mg), cardiac glycosides (55.93μg/mg) and saponins (61.47μg/mg) in the herbal drug glucoblock. The results showed significantly lower FPG levels in the treatment groups when compared to the diabetic control. Group 3 administered metformin had significantly higher FPG levels compared to the negative control. Group 4 administered the herbal drug glucoblock and group 5 administered a combination of metformin and glucoblock, showed no significant differences in FPG levels when compared to the negative control. The diabetic control had significantly higher FPI levels compared to the negative control and treatment groups. The treatment groups showed no significant differences in FPI levels when compared to the negative control. HOMA-IR was significantly higher in the diabetic control compared to the negative control and treatment groups. Also, HOMA-IR values in the treatment groups showed no significant difference compared to the negative control except for group 3 (metformin), that was significantly higher than the negative control. SOD was significantly lower in the diabetic control, compared to the negative control and treatment groups. There were no significant differences in SOD levels in the treatment groups compared to the negative control. TOS levels in the negative control group and treatment groups were significantly lower, compared to the diabetic control. TAS was significantly lower in the diabetic control and treatment groups compared to the negative control. OSI in the diabetic control was significantly higher, compared to the negative control and treatment groups. Also, the treatment groups had significantly higher OSI compared to the negative control. Conclusion: High fat diet and streptozotocin induction produced significant insulin resistance and oxidative stress in the diabetic rats. Glucoblock was more effective in reducing insulin resistance compared to metformin. The combination showed synergistic drug-herb reaction as glucoblock potentiated the actions of metformin. Both showed antioxidant potential but were not effective in lowering oxidative stress to normal levels. There is need to incorporate antioxidant therapy in the treatment protocol for diabetes mellitus.


Author(s):  
Mohammad Ehsan Bayatpoor ◽  
Saeed Mirzaee ◽  
Mohammad Karami Abd ◽  
Mohammad Taghi Mohammadi ◽  
Shima Shahyad ◽  
...  

AbstractObjectiveOxidative stress in diabetic mellitus is a consequence of oxidative stress, which plays a critical role in the pathogenesis of diabetic tissue damage. Receptors for advanced glycation end products and for oxidized low-density lipoproteins (LDL) have critical contribution in oxidative tissue damage. The present study investigated whether anti-diabetic effects of Crocin via modulation of mRNA expression of RAGE and LOX-1 receptors in diabetic rats.MethodsIn the current study, high-fat cholesterol (HFC) and streptozotocin (40 mg/kg) used to induce type II diabetes. Experimental groups as follows: (Group 1: control); (Group 2: control treatment [Crocin]); (Group 3: DM [STZ]); (Group 4: DM treatment [STZ + Crocin]); (Group 5; DM + HFC [STZ + HFC]); (Group 6; DM + HFC treatment [STZ + HFC + Crocin]). Crocin (20 mg/kg/day, i.p.) administered in treatment groups for 60 days. Serum glucose and cholesterol levels evaluated on days 5, 30 and 60 after induction of DM. Pancreatic tissue from all group removed on day 60 for histological and RT-PCR analysis.ResultsApplication of Crocin significantly decreased serum cholesterol levels on day 60 after induction of DM in diabetic + HFC rats. Moreover, Crocin significantly decreased serum glucose levels on days 30 and 60 both in diabetic and diabetic + HFC rats. Crocin partially prevented the atrophic effects of STZ on both exocrine and endocrine parts of pancreas. Additionally, Crocin significantly decreased LOX-1 and RAGE mRNA expression OF pancreas in diabetic rats.ConclusionThe current study suggested that Crocin suppressed atrophic change of the pancreas by decrease of LOX-1 and RAGE mRNA expression in diabetic rats.


2020 ◽  
Vol 21 (10) ◽  
pp. 3653
Author(s):  
Sara Cheleschi ◽  
Marcella Barbarino ◽  
Ines Gallo ◽  
Sara Tenti ◽  
Maria Bottaro ◽  
...  

Hydrostatic pressure (HP) modulates chondrocytes metabolism, however, its ability to regulate oxidative stress and microRNAs (miRNA) has not been clarified. The aim of this study was to investigate the role of miR-34a, miR-146a, and miR-181a as possible mediators of HP effects on oxidative stress in human osteoarthritis (OA) chondrocytes. Chondrocytes were exposed to cyclic low HP (1–5 MPa) and continuous static HP (10 MPa) for 3~h. Metalloproteinases (MMPs), disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5, type II collagen (Col2a1), miR-34a, miR-146a, miR-181a, antioxidant enzymes, and B-cell lymphoma 2 (BCL2) were evaluated by quantitative real-time polymerase chain reaction qRT-PCR, apoptosis and reactive oxygen species ROS production by cytometry, and β-catenin by immunofluorescence. The relationship among HP, the studied miRNA, and oxidative stress was assessed by transfection with miRNA specific inhibitors. Low cyclical HP significantly reduced apoptosis, the gene expression of MMP-13, ADAMTS5, miRNA, the production of superoxide anion, and mRNA levels of antioxidant enzymes. Conversely, an increased Col2a1 and BCL2 genes was observed. β-catenin protein expression was reduced in cells exposed to HP 1–5 MPa. Opposite results were obtained following continuous static HP application. Finally, miRNA silencing enhanced low HP and suppressed continuous HP-induced effects. Our data suggest miRNA as one of the mechanisms by which HP regulates chondrocyte metabolism and oxidative stress, via Wnt/β-catenin pathway.


Author(s):  
D. G. Syahidah Nadiah Binti Abdull Majid ◽  
Mohammad Iqbal

Objective: The antihyperglycemic and antioxidative effects of L. microphyllum were evaluated by using in vivo methods in normal and alloxan induced diabetic rats.Methods: Diabetes was induced in Sprague Dawley rats by injecting alloxan through intravenous (i. v) at a dose of 100 mg/kg of body weight. Aqueous extract of L. microphyllum at different doses (400, 200 and 100 mg/kg of body weight) was administered orally (orogastric intubation) for 14 d. Blood glucose and oxidative stress markers were measured. Hematoxylin and eosin staining method were used to examine the pancreatic tissues.Results: At the 14 d interval, fasting blood glucose showed a reduction in serum glucose levels in animals pretreated with L. microphyllum compared with alloxan alone treated group. Oxidative stress was noticed in rat’s pancreatic tissue as evidenced by a significant decrease in glutathione level, glutathione reductase, glutathione-S-transferase, and catalase activities. Malondialdehyde showed a significant increase compared to the normal saline-treated control group. Serum biochemistry and oxidative stress markers were consistent with the pancreatic histopathological studies. Treatment of diabetic rats with L. microphyllum at a dose level of 100, 200 and 400 mg/kg body weight leaves extract for 14 d significantly prevented these alterations and attenuated alloxan-induced oxidative stress (P<0.05).Conclusion: The results of the present study indicated that the antihyperglycemic potential of L. microphyllum might be ascribable to its antioxidant and free radical scavenging properties. Thus, it is concluded that L. microphyllum may be helpful in the prevention of diabetic complications associated with oxidative stress.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 416
Author(s):  
Yoelvis Garcia-Mesa ◽  
He N. Xu ◽  
Patricia Vance ◽  
Analise L. Gruenewald ◽  
Rolando Garza ◽  
...  

Dimethyl fumarate (DMF), an antioxidant/anti-inflammatory drug approved for the treatment of multiple sclerosis, induces antioxidant enzymes, in part through transcriptional upregulation. We hypothesized that DMF administration to simian immunodeficiency virus (SIV)-infected rhesus macaques would induce antioxidant enzyme expression and reduce oxidative injury and inflammation throughout the brain. Nine SIV-infected, CD8+-T-lymphocyte-depleted rhesus macaques were studied. Five received oral DMF prior to the SIV infection and through to the necropsy day. Protein expression was analyzed in 11 brain regions, as well as the thymus, liver, and spleen, using Western blot and immunohistochemistry for antioxidant, inflammatory, and neuronal proteins. Additionally, oxidative stress was determined in brain sections using immunohistochemistry (8-OHdG, 3NT) and optical redox imaging of oxidized flavoproteins containing flavin adenine dinucleotide (Fp) and reduced nicotinamide adenine dinucleotide (NADH). The DMF treatment was associated with no changes in virus replication; higher expressions of the antioxidant enzymes NQO1, GPX1, and HO-1 in the brain and PRDX1 and HO-2 in the spleen; lower levels of 8-OHdG and 3NT; a lower optical redox ratio. The DMF treatment was also associated with increased expressions of cell-adhesion molecules (VCAM-1, ICAM-1) and no changes in HLA-DR, CD68, GFAP, NFL, or synaptic proteins. The concordantly increased brain antioxidant enzyme expressions and reduced oxidative stress in DMF-treated SIV-infected macaques suggest that DMF could limit oxidative stress throughout the brain through effective induction of the endogenous antioxidant response. We propose that DMF could potentially induce neuroprotective brain responses in persons living with HIV.


Sign in / Sign up

Export Citation Format

Share Document