Biological Evaluation of Some Selected Cyclic Imides: Mitochondrial Effects and in vitro Cytotoxicity

2004 ◽  
Vol 59 (9-10) ◽  
pp. 663-672 ◽  
Author(s):  
Silvia Regina Tozado Prado ◽  
Valdir Cechinel-Filho ◽  
Fátima Campos Buzzi ◽  
Rogério Corrêa ◽  
Silvia Maria Correia Suter Cadena ◽  
...  

Abstract Cyclic imides such as succinimides, maleimides, glutarimides, phthalimides and their derivatives contain an imide ring and a general structure -CO-N(R)-CO- that confers hydrophobicity and neutral characteristic. A diversity of biological activities and pharmaceutical uses have been attributed to them, such as antibacterial, antifungal, antinociceptive, anticonvulsant, antitumor. In spite of these activities, much of their action mechanisms at molecular and cellular levels remain to be elucidated. We now show the effects of several related cyclic imides: maleimides (S2, S2.1, S2.2, S3), glutarimides (S4, S5, S6), 4-aminoantipyrine derivatives (L1, F1, AL1, F1.14, F1.2) and sulfonated succinimides (RO1, FA, FE, FD, MC, DMC) on isolated rat liver mitochondria, B16-F10 melanoma cell line, peritoneal macrophages and different bacterial streams. The effects on mitochondrial respiratory parameters, cell viability and antibacterial activity were also evaluated. The results indicated that S3, S5 and S6 caused an increased oxygen consumption in the presence of ADP (state III) or its absence (state IV), while all other compounds decreased those parameters at different degrees of inhibition. All the compounds decreased the respiratory control coefficient (RCC). Loss of cell viability of peritoneal macrophages and the B16- F10 cell line was observed, L1 and S2.1 being more effective. S1, S2, S3, L1 and F1 compounds showed antibacterial activity at experimental concentrations.

2020 ◽  
Vol 17 (36) ◽  
pp. 18-31
Author(s):  
Ahmad khadem HACHIM ◽  
Rashid Rahim HATEET ◽  
Tawfik Muhammad MUHSIN

The purpose of the present work aimed at exploring the potential biochemical components and biological activities of an organic extract of the white truffle Tirmania nivea collected from the Iraqi desert, then test the organic extract against the Cytotoxicity on Human Larynx carcinoma cells and selected strains of pathogenic bacteria. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry GC/MSS were used to analyze mycochemical compositions. The antibacterial activity and Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) was investigated using a disk diffusion agar method. The truffle extract's cytotoxicity effect against the larynx cell line (Hep-2) was assessed by the MTT assay (in vitro). FTIR results provided the presence of phenol, carboxylic acid, and alkane's functional group, The GC-MS analysis of T. nivea disclose the existence of nineteen compounds that can contribute to the pharmaceutical properties of the truffle. As for antibacterial activity result, A growth inhibition activity of truffle extract at (18-40 mm inhibition zones) against the tested pathogenic bacterial strains was detected, which minimum inhibitory concentration values ranged from 3.12 to 6.25 mg/mL for Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923) Respectively. The results of cytotoxicity shown that the organic truffle extract exhibited a high inhibitory rate (52.685%) against cell line (Hep-2) at a concentration of 1.56 ?g/mL. In this work, the results showed that the organic extracts of T. nivea are very promising as cancer cytotoxicity and antibacterial agent for future medical applications.


Author(s):  
Yusuke Araki ◽  
Yusuke Hanaki ◽  
Masaki Kita ◽  
Koutaro Hayakawa ◽  
Kazuhiro Irie ◽  
...  

Abstract Oscillatoxins (OTXs) and aplysiatoxins (ATXs) are biosynthetically related polyketides produced by marine cyanobacteria. We previously developed a synthetic route to phenolic O-methyl analogs of OTX-D and 30-methyl-OTX-D during collective synthesis of these natural products. According to our synthetic strategy, we achieved total synthesis of OTX-D, 30-methyl-OTX-D, OTX-E, and OTX-F by deprotecting the O-methyl group in an earlier intermediate, and determined their biological activities. Although OTX-D and 30-methyl-OTX-D have been reported to show anti-leukemic activity against L1210 cell line, we found that their cytotoxicity in vitro against this cell line is relatively weak (IC50: 29–52 μM). In contrast, OTX-F demonstrated cell line-selective anti-proliferative activity against DMS-114 lung cancer cells, which implies that OTXs target as yet unknown target molecules as part of this unique activity.


2021 ◽  
Vol 18 (4) ◽  
pp. 362-374
Author(s):  
Mamatha S.V ◽  
S.L. Belagali ◽  
Mahesh Bhat

Background: Benzothiazoles possess a vast sphere of biological activities including anti- inflammatory, antibacterial activities whereas triazoles display various pharmacological properties including antimicrobial and antitubercular activities. Hence, triazole conjugated benzothiazole side-chain anticipating their interesting biological properties has been focused upon. Objective: The objective of the current work is synthesis and biological evaluation of a new series of benzothiazole appended triazole derivatives. Methods: The target compounds were prepared via a multi-step method involving the treatment of 2-amino benzothiazole with hydrazine followed by cyclization with carbon disulfide to give the corresponding triazol-2-thiol derivatives and then alkylation of these derivatives. All the synthesized compounds were characterized by FT-IR, Mass, 1H and 13C NMR spectra and were screened for their antibacterial, antioxidant, anti-inflammatory and anti-tubercular (anti-TB) activities in vitro. These molecules were also docked into the enoyl acyl carrier reductase (Inha, PDB ID-1ZID) in silico. Results: While all the synthesized compounds were active against M. tuberculosis at 50 μg/ml, the pyrrolidine and piperidine appended benzothiazolyltriazoles showed the superior activity (MIC values 12.5 to 1.6 μg/ml). Compound 5a (5-CH3 with piperidine), 5b (7-CH3 with piperidine) and 7b (7-CH3 with pyrrolidine) showed good antibacterial activity against Staphylococcus aureus with MIC value 31.25μg/ml, while compounds 7a (5-CH3 with pyrrolidine), 6b (7-CH3 with morpholine) and 8c (7-Br with pyridine) exhibited good antibacterial activity against E-coli with MIC value 62.5μg/ml. Compounds 7b (7-CH3 with pyrrolidine) and 5c (7-Br with piperidine) showed good anti-oxidant activities with IC50 values 93.25 and 82.25, respectively. Notably, these compounds were non-toxic to the normal cells even at high concentrations with IC50 value 238μg/ml. Conclusion: The compound 7b, a benzothiazolyltriazole having a pyrrolidine group (five membered ring) attached to two CH2 groups and methyl substituent at 7th position of the benzothiazole ring emerged as a novel and promising hit molecule that showed anti-TB, antimicrobial and antiinflammatory activities in vitro.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3038
Author(s):  
Ramesh ◽  
Rao ◽  
Hong ◽  
Reddy

A series of 2-hydroxy-3-chrysino dithiocarbamate derivatives (3a–k) were designed, synthesized, and characterized for their structure determination by 1H NMR, 13C NMR, and HRMS (ESI) spectral data. They were screened for their in vitro biological activities against a panel of selected bacterial and fungal strains. These antimicrobial studies indicate that some of the analogues manifested significant activity compared to standard drugs. Among the synthetic analogues (3a–k), compounds 3d, 3f, and 3j exhibited very good antibacterial activity and compounds 3d, 3f, and 3h showed very good antifungal activity compared to the standard drugs penicillin and itrazole, respectively. The compounds 3e, 3g, and 3h showed moderate antibacterial activity and the compounds 3j and 3k showed moderate antifungal activity. Molecular docking studies were performed and the experimental antimicrobial screening results were also correlated with the binding energy values obtained by molecular docking. The synthesized chrysin analogues (3a–k) have obeyed Lipinski’s “rule of five” and have drug-likeness.


2021 ◽  
Vol 22 (6) ◽  
pp. 3253
Author(s):  
Clarisse Roblin ◽  
Steve Chiumento ◽  
Cédric Jacqueline ◽  
Eric Pinloche ◽  
Cendrine Nicoletti ◽  
...  

The world is on the verge of a major antibiotic crisis as the emergence of resistant bacteria is increasing, and very few novel molecules have been discovered since the 1960s. In this context, scientists have been exploring alternatives to conventional antibiotics, such as ribosomally synthesized and post-translationally modified peptides (RiPPs). Interestingly, the highly potent in vitro antibacterial activity and safety of ruminococcin C1, a recently discovered RiPP belonging to the sactipeptide subclass, has been demonstrated. The present results show that ruminococcin C1 is efficient at curing infection and at protecting challenged mice from Clostridium perfringens with a lower dose than the conventional antibiotic vancomycin. Moreover, antimicrobial peptide (AMP) is also effective against this pathogen in the complex microbial community of the gut environment, with a selective impact on a few bacterial genera, while maintaining a global homeostasis of the microbiome. In addition, ruminococcin C1 exhibits other biological activities that could be beneficial for human health, as well as other fields of applications. Overall, this study, by using an in vivo infection approach, confirms the antimicrobial clinical potential and highlights the multiple functional properties of ruminococcin C1, thus extending its therapeutic interest.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 620
Author(s):  
Anne Ardaillou ◽  
Jérôme Alsarraf ◽  
Jean Legault ◽  
François Simard ◽  
André Pichette

Several families of naturally occurring C-alkylated dihydrochalcones display a broad range of biological activities, including antimicrobial and cytotoxic properties, depending on their alkylation sidechain. The catalytic Friedel–Crafts alkylation of the readily available aglycon moiety of neohesperidin dihydrochalcone was performed using cinnamyl, benzyl, and isoprenyl alcohols. This procedure provided a straightforward access to a series of derivatives that were structurally related to natural balsacones, uvaretin, and erioschalcones, respectively. The antibacterial and cytotoxic potential of these novel analogs was evaluated in vitro and highlighted some relations between the structure and the pharmacological properties of alkylated dihydrochalcones.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Vishal Banewar

Pyrazolines are well known and important nitrogen containing 5-membered heterocyclic compounds. In the present investigation, a series of various heteroaryl chalcones and pyrazolines were synthesized by condensing formylquinolines with diverse ketones. The newly synthesized 2-pyrazolines were characterized on the basis of elemental analysis and spectroscopic data. All of the newly synthesized target compounds were selected by the NCI forin vitrobiological evaluation. These active compounds exhibited broad spectrum of various biological activities. Most of the compounds showed potent activity.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Terézia Kamasová ◽  
Ana Sofia Abreu ◽  
Fátima Paiva-Martins ◽  
Luís Belo ◽  
Alice Santos-Silva ◽  
...  

Abstract Background and Aims Renal hypoxia plays a key role in the pathophysiology of acute kidney injury and in the progression of chronic kidney disease, potentiating other important risk factors for renal disease, such as oxidative stress, renal fibrosis, and inflammation. Hydroxytyrosol (HT) is a phenolic compound extracted from olives and olive-derived products, that has been shown to detain potent in vitro antioxidant and anti-inflammatory activity. The aim of this study was to evaluate the preventive therapeutic potential of HT on a cellular model of renal hypoxia. Method A cell line of normal adult proximal tubular epithelium (HK-2 cell line) was used to determine the effects of the chemical induction of hypoxia with cobalt chloride (CoCl2), as well as the preventive potential of HT on the elicited effects. For this purpose, HK-2 cells were exposed for 24 h to 254 µM CoCl2, to mimic the hypoxic conditions, or pre-incubated for 1 h with 5 µM HT and further exposed to the CoCl2 for 24 h more. Cell viability was assessed by the thiazolyl blue tetrazolium bromide reduction assay. Oxidative status was evaluated by the measurement of reactive oxygen and nitrogen species (ROS and RNS) and reduced glutathione (GSH) levels, by using standardized fluorometric and colorimetric assays. The expression of several genes related to the hypoxic, inflammatory, and fibrotic responses was determined by quantitative polymerase chain reaction (PCR). Results CoCl2-exposed HK-2 cells (hypoxic conditions) showed a significant decrease in cell viability (p < 0.0001 vs. control), and a disruption of the oxidative status, characterized by an increase of ROS and RNS production of about 6-fold over control cells (p < 0.0001) and a decrease in GSH intracellular levels of nearly 50 % (p < 0.05). Although the pre-exposure to HT showed no significant effects on the loss of cell viability elicited by CoCl2, the presence of HT prior to induction of hypoxia reduced the generation of ROS and RNS (p < 0.05 for HT + CoCl2 vs. CoCl2) and prevented the GSH depletion (GSH levels for HT + CoCl2 were similar to those of control) elicited by CoCl2. When compared to control cells, CoCl2-exposed HK-2 cells also showed increased expression of genes related to hypoxia (HIF1A, p < 0.05; GAPDH, p < 0.0001), as well as of modulators of inflammation (IL6, p < 0.0001) and fibrosis (TGFB1, p < 0.05). Importantly, the expression of these genes was partially or even totally suppressed by the pre-exposure of cells to HT (GAPDH, p < 0.01 for HT + CoCl2 vs. CoCl2; expression of HIF1A, IL6 and TGFB1 for HT + CoCl2 was similar to that of control). Conclusion Our data supports the potential for a multiplicity of preventive effects of HT, providing antioxidant, anti-inflammatory and anti-fibrotic defenses to renal cells under hypoxic conditions. Importantly, the development of safe and effective therapeutic approaches based on phytochemicals such as HT, may present substantial advantages for renal patients over synthetic drugs, including fewer side effects, significantly lower price, and ease of administration in the form of dietary supplements. Acknowledgments This work was supported by Applied Molecular Biosciences Unit (UCIBIO), financed by national funds from FCT/MCTES (UIDB/04378/2020), by North Portugal Regional Coordination and Development Commission (CCDR-N)/NORTE2020/Portugal 2020 (Norte-01-0145-FEDER-000024), and co-financed by FCT/MCTES (PTDC/OCE-ETA/32492/2017) and FEDER/COMPETE 2020 (POCI-01-0145-FEDER-032492).


Author(s):  
Suriyakala Perumal Chandran ◽  
Kannikaparameswari Nachimuthu

Objective: Colorectal cancer is one of the most commonly diagnosed cancer and also most common gastrointestinal malignancy with high prevalence rate in the younger population. Usually, cancer cells are surrounded by a fibrin coat which is resistant to fibrinolytic degradation. This fibrin coat is act as self-protective against natural killing mechanism. The main objective was to prepare papain-loaded solid lipid nanoparticles (P-SLN) by melt dispersion-ultrasonication method and investigated the cytotoxic efficacy against colorectal adenocarcinoma (human colorectal adenocarcinoma [HCT 15]) cells.Methods: Optimized polymer ratio was characterized by differential scanning calorimetry, Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, entrapment efficiency, particle size and zeta potential analysis, in vitro drug release, and in vitro cytotoxicity studies on HCT-15 colorectal adenocarcinoma cells.Results: The results showed that the particle size, morphological character and zeta potential value of optimized batch P-SLN were 265 nm, spherical and −26.5 Mv, respectively. The in vitro drug profile of P-SLN exhibited that it produced sustain drug release, and the cell viability of HCT-15 against P-SLN shown better efficacy than pure papain enzyme.Conclusion: P-SLNs were successfully prepared and investigated the in vitro drug release and in vitro cell viability against HCT-15 cell line.


2008 ◽  
Vol 25 (2) ◽  
pp. 109-126 ◽  
Author(s):  
Hitoshi Sakaguchi ◽  
Takao Ashikaga ◽  
Masaaki Miyazawa ◽  
Nanae Kosaka ◽  
Yuichi Ito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document