Spectroscopic Identifi cation of New Ellagitannins and a Trigalloylglucosylkaempferol from an Extract of Euphorbia cotinifolia L. with Antitumour and Antioxidant Activity

2012 ◽  
Vol 67 (3-4) ◽  
pp. 151-162
Author(s):  
Mohamed S. Marzouk ◽  
Fatma A. Moharram ◽  
Amira Gamal-Eldeen ◽  
Iman M. Damlakhy

5From an extract of leaves and small branches of Euphorbia cotinifolia L., 17 polyphenols were isolated including two new ellagitannins and a trigalloyl-glucosylkaempferol. Based on extensive spectral data (UV, ESI-MS, 1H NMR, DEPT and 1D/2D NMR) and chemical studies, their structures were characterized as 1-O-galloyl-3,6-hexahydroxydiphenoyl-DB1,4- glucopyranose (), 1-O-galloyl-3,6-valoneoyl-D-B1,4-glucopyranose (6), and kaempferol 3-O-(2”,3”,6”-tri-O-galloyl)-β-D-glucopyranoside (13). Biological evaluation indicated that the 80% aqueous methanol extract (AME), chloroform extract (CE), and some pure compounds have potent scavenging activity in the DPPH assay with SC50 values lower than that of ascorbic acid, especially 5, 7 - 9, and a mixture of hyperin 6”-gallate (11) and isoquercitrin 6”-gallate (12). Moreover, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) cell viability assay, 6 and 8 exhibited the highest inhibition of human hepatocellular carcinoma cells (Hep-G2), while AME, CE, 5, 7, 9, and the mixture of 11 and 12 were found to be moderate growth inhibitors according to their IC50 values. In addition, AME, 5, and 8 exhibited significant antiproliferative activity against colon carcinoma cells (HCT-116); however, CE and the other examined compounds displayed moderate to low antitumour activity against HCT-116 cells

2019 ◽  
Vol 20 (8) ◽  
pp. 1917 ◽  
Author(s):  
Yixuan Xia ◽  
Chu Shing Lam ◽  
Wanfei Li ◽  
Md. Shahid Sarwar ◽  
Kanglun Liu ◽  
...  

Natural products, explicitly medicinal plants, are an important source of inspiration of antitumor drugs, because they contain astounding amounts of small molecules that possess diversifying chemical entities. For instance, Isodon (formerly Rabdosia), a genus of the Lamiaceae (formerly Labiatae) family, has been reported as a rich source of natural diterpenes. In the current study, we evaluated the in vitro anti-proliferative property of flexicaulin A (FA), an Isodon diterpenoid with an ent-kaurane structure, in human carcinoma cells, by means of cell viability assay, flow cytometric assessment, quantitative polymerase chain reaction array, Western blotting analysis, and staining experiments. Subsequently, we validated the in vivo antitumor efficacy of FA in a xenograft mouse model of colorectal carcinoma. From our experimental results, FA appears to be a potent antitumor molecule, since it significantly attenuated the proliferation of human colorectal carcinoma cells in vitro and restricted the growth of corresponsive xenograft tumors in vivo without causing any adverse effects. Regarding its molecular mechanism, FA considerably elevated the expression level of p21 and induced cell cycle arrest in the human colorectal carcinoma cells. While executing a non-apoptotic mechanism, we believe the antitumor potential of FA opens up new horizons for the therapy of colorectal malignancy.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3031 ◽  
Author(s):  
Dvora Namdar ◽  
Hillary Voet ◽  
Vinayaka Ajjampura ◽  
Stalin Nadarajan ◽  
Einav Mayzlish-Gati ◽  
...  

Mixtures of different Cannabis sativa phytocannabinoids are more active biologically than single phytocannabinoids. However, cannabis terpenoids as potential instigators of phytocannabinoid activity have not yet been explored in detail. Terpenoid groups were statistically co-related to certain cannabis strains rich in Δ9-tetrahydrocannabinolic acid (THCA) or cannabidiolic acid (CBDA), and their ability to enhance the activity of decarboxylase phytocannabinoids (i.e., THC or CBD) was determined. Analytical HPLC and GC/MS were used to identify and quantify the secondary metabolites in 17 strains of C. sativa, and correlations between cannabinoids and terpenoids in each strain were determined. Column separation was used to separate and collect the compounds, and cell viability assay was used to assess biological activity. We found that in “high THC” or “high CBD” strains, phytocannabinoids are produced alongside certain sets of terpenoids. Only co-related terpenoids enhanced the cytotoxic activity of phytocannabinoids on MDA-MB-231 and HCT-116 cell lines. This was found to be most effective in natural ratios found in extracts of cannabis inflorescence. The correlation in a particular strain between THCA or CBDA and a certain set of terpenoids, and the partial specificity in interaction may have influenced the cultivation of cannabis and may have implications for therapeutic treatments.


2022 ◽  
Author(s):  
Aleksandar Radivoievych ◽  
Benjamin Kolp ◽  
Sergii Grebinyk ◽  
Svitlana Prylutska ◽  
Uwe Ritter ◽  
...  

Abstract The acoustic pressure waves of ultrasound (US) penetrate biological tissues deeper than light. Another important feature of US its potential to generate light emission within the excited medium termed sonoluminescence. This promoted the idea of its use as an alternative energy source for photosensitizer excitation. Pristine C60 fullerene (C60), an excellent photosensitizer, was explored in the frame of cancer sonodynamic therapy (SDT). For that purpose, we analyzed C60 effects on human cervix carcinoma HeLa cells in combination with a low intensity US treatment. The time-dependent accumulation of C60 in HeLa cells reached its maximum at 24 h (800 ± 66 ng / 106 cells). Half of extranuclear C60 localized within mitochondria. The efficiency of C60 nanostructure’s sonoexcitation with 1 MHz US was tested with cell viability assay. A significant proapoptotic sonotoxic effect was found for HeLa cells. C60’s ability to induce apoptosis of carcinoma cells after sonoexcitation with US provides a promising novel approach for cancer treatment.


2020 ◽  
Vol 17 (3) ◽  
pp. 216-223
Author(s):  
Jalal Nourmahammadi ◽  
Ebrahim Saeedian Moghadam ◽  
Zahra Shahsavari ◽  
Mohsen Amini

Cancer is one of the major causes of mortality all around the world. Globally, nearly 1 in 6 deaths is due to cancer. Researchers are trying to synthesize new anticancer agents. Previous studies demonstrated that some pyrazole derivatives could be considered as potential anticancer agents. Herein, ten novel derivatives of 1,5-diarylpyrazole were synthesized in four step reactions and cytotoxic activity was investigated by MTT cell viability assay. All of the compounds were characterized by 1H NMR and 13C NMR and their purity was confirmed by elemental analysis. The cytotoxicity was determined against three cancerous cell lines (HT-29, U87MG and MDA-MB 468) and AGO1522 as a normal cell line. Compound 5a showed the best cytotoxic activity on cancerous cell lines in comparison to paclitaxel. Annexin V/ PI staining assay also showed that compounds 5a and 5i would lead to significant apoptosis induction in MDA-MB 486 cell line.


Author(s):  
Tulasi Cdsln ◽  
Lakshmi Narasu M ◽  
Saida L

Objective: Presented here in the study, the screening for antiproliferative activity of Ficus benghalensis dried latex solvent extracts on human breast MDA MB 231, colorectal HCT116, and neuroblastoma IMR 32 cell lines.Methods: The anticancer activity of ethanol, methanol, ethyl acetate, and acetone extracts against the above-mentioned cancer cell lines as well in lymphocytes, by 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay and propidium iodide staining was used to observe the morphological changes occurred in the cell due to the affect of latex extract.Results: Among all the extracts, ethanol extract was found to be effective against IMR 32 and HCT 116 whereas ethyl acetate extract in case of MDA MB 231 cell line with 50% inhibitory concentration 50% (IC50) 123.27±2.5 μg/ml, 99.82±9.06 μg/ml, and 75.66± 6.3, respectively.Conclusion: The extracts were found to be less toxic on peripheral blood lymphocytes. The IC50 value of the cytotoxic activity measured using MTT dye indicated that the extracts were efficient in inhibition of the cell proliferation of these cell lines.


Author(s):  
Jiafeng Wang ◽  
Jiale Wu ◽  
Yinglong Han ◽  
Jie Zhang ◽  
Yu Lin ◽  
...  

A series of novel betulin-28-hydrazone derivatives (7a-7o) were synthesized. All compounds were evaluated for their in vitro cytotoxicities in four human carcinoma cells (HepG2, MCF-7, HCT-116 and A549). Among them, compound 7l displayed the most potent cytotoxicity with an IC50 (concentration of the tested compound that inhibits 50% of cell growth) value of 7.37 ± 0.38 μM against MCF-7 cells. The preliminary cellular mechanism studies indicated that compound 7l could induce MCF-7 cells apoptosis. The above findings indicated that compound 7l may be used as a lead compound for antitumor agents with improved efficacy.


2019 ◽  
Vol 26 (12) ◽  
pp. 887-892
Author(s):  
Cynarha Daysy Cardoso da Silva ◽  
Cristiane Moutinho Lagos de Melo ◽  
Elba Verônica Matoso Maciel Carvalho ◽  
Mércia Andréa Lino da Silva ◽  
Rosiely Félix Bezerra ◽  
...  

Background: Lectins have been studied in recent years due to their immunomodulatory activities. Objective: We purified a lectin named OniL from tilapia fish (Oreochromis niloticus) and here we analyzed the cell proliferation and cytokine production in Balb/c mice splenocytes. Methods: Cells were stimulated in vitro in 24, 48, 72 hours and 6 days with different concentrations of OniL and Con A. Evaluation of cell proliferation was performed through [3H]-thymidine incorporation, cytokines were investigated using ELISA assay and cell viability assay was performed by investigation of damage through signals of apoptosis and necrosis. Results: OniL did not promote significant cell death, induced high mitogenic activity in relation to control and Con A and stimulated the cells to release high IL-2 and IL-6 cytokines. Conclusion: These findings suggest that, like Con A, OniL lectin can be used as a mitogenic agent in immunostimulatory assays.


2020 ◽  
Vol 17 (1) ◽  
pp. 2-22 ◽  
Author(s):  
Abdel-Baset Halim

:Cell-based assays are an important part of the drug discovery process and clinical research. One of the main hurdles is to design sufficiently robust assays with adequate signal to noise parameters while maintaining the inherent physiology of the cells and not interfering with the pharmacology of target being investigated.:A plethora of assays that assess cell viability (or cell heath in general) are commercially available and can be classified under different categories according to their concepts and principle of reactions. The assays are valuable tools, however, suffer from a large number of limitations. Some of these limitations can be procedural or operational, but others can be critical as those related to a poor concept or the lack of proof of concept of an assay, e.g. those relying on differential permeability of dyes in-and-out of viable versus compromised cell membranes. While the assays can differentiate between dead and live cells, most, if not all, of them can just assess the relative performance of cells rather than providing a clear distinction between healthy and dying cells. The possible impact of relatively high molecular weight dyes, used in most of the assay, on cell viability has not been addressed. More innovative assays are needed, and until better alternatives are developed, setup of current cell-based studies and data interpretation should be made with the limitations in mind. Negative and positive control should be considered whenever feasible. Also, researchers should use more than one orthogonal method for better assessment of cell health.


2020 ◽  
Vol 16 (4) ◽  
pp. 563-574 ◽  
Author(s):  
Rong Y. Han ◽  
Yu Ge ◽  
Ling Zhang ◽  
Qing M. Wang

Background: Protein tyrosine phosphatases 1B are considered to be a desirable validated target for therapeutic development of type II diabetes and obesity. Methods: A new series of imidazolyl flavonoids as potential protein tyrosine phosphatase inhibitors were synthesized and evaluated. Results: Bioactive results indicated that some synthesized compounds exhibited potent protein phosphatase 1B (PTP1B) inhibitory activities at the micromolar range. Especially, compound 8b showed the best inhibitory activity (IC50=1.0 µM) with 15-fold selectivity for PTP1B over the closely related T-cell protein tyrosine phosphatase (TCPTP). Cell viability assays indicated that 8b is cell permeable with lower cytotoxicity. Molecular modeling and dynamics studies revealed the reason for selectivity of PTP1B over TCPTP. Quantum chemical studies were carried out on these compounds to understand the structural features essential for activity. Conclusion: Compound 8b should be a potential selective PTP1B inhibitor.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 707
Author(s):  
Mohd Shahnawaz Khan ◽  
Alya Alomari ◽  
Shams Tabrez ◽  
Iftekhar Hassan ◽  
Rizwan Wahab ◽  
...  

The continuous loss of human life due to the paucity of effective drugs against different forms of cancer demands a better/noble therapeutic approach. One possible way could be the use of nanostructures-based treatment methods. In the current piece of work, we have synthesized silver nanoparticles (AgNPs) using plant (Heliotropiumbacciferum) extract using AgNO3 as starting materials. The size, shape, and structure of synthesized AgNPs were confirmed by various spectroscopy and microscopic techniques. The average size of biosynthesized AgNPs was found to be in the range of 15 nm. The anticancer potential of these AgNPs was evaluated by a battery of tests such as MTT, scratch, and comet assays in breast (MCF-7) and colorectal (HCT-116) cancer models. The toxicity of AgNPs towards cancer cells was confirmed by the expression pattern of apoptotic (p53, Bax, caspase-3) and antiapoptotic (BCl-2) genes by RT-PCR. The cell viability assay showed an IC50 value of 5.44 and 9.54 µg/mL for AgNPs in MCF-7 and HCT-116 cell lines respectively. We also observed cell migration inhibiting potential of AgNPs in a concentration-dependent manner in MCF-7 cell lines. A tremendous rise (150–250%) in the production of ROS was observed as a result of AgNPs treatment compared with control. Moreover, the RT-PCR results indicated the difference in expression levels of pro/antiapoptotic proteins in both cancer cells. All these results indicate that cell death observed by us is mediated by ROS production, which might have altered the cellular redox status. Collectively, we report the antimetastasis potential of biogenic synthesized AgNPs against breast and colorectal cancers. The biogenic synthesis of AgNPs seems to be a promising anticancer therapy with greater efficacy against the studied cell lines.


Sign in / Sign up

Export Citation Format

Share Document