The In Vitro Efficacy of Doxycycline over Vancomycin and Penicillin in the Elimination of Cutibacterium Acnes Biofilm

2020 ◽  
pp. 53-64
Author(s):  
Matthew D. Budge ◽  
John A. Koch ◽  
Jonathan B. Mandell ◽  
Alex J. Cappellini ◽  
Sara Orr ◽  
...  
Keyword(s):  
2021 ◽  
Vol 9 (7) ◽  
pp. 1486
Author(s):  
Marcela Espinoza-Monje ◽  
Jorge Campos ◽  
Eduardo Alvarez Villamil ◽  
Alonso Jerez ◽  
Stefania Dentice Maidana ◽  
...  

Previously, we isolated lactic acid bacteria from the slime of the garden snail Helix aspersa Müller and selected Weissella viridescens UCO-SMC3 because of its ability to inhibit in vitro the growth of the skin-associated pathogen Cutibacterium acnes. The present study aimed to characterize the antimicrobial and immunomodulatory properties of W. viridescens UCO-SMC3 and to demonstrate its beneficial effect in the treatment of acne vulgaris. Our in vitro studies showed that the UCO-SMC3 strain resists adverse gastrointestinal conditions, inhibits the growth of clinical isolates of C. acnes, and reduces the adhesion of the pathogen to keratinocytes. Furthermore, in vivo studies in a mice model of C. acnes infection demonstrated that W. viridescens UCO-SMC3 beneficially modulates the immune response against the skin pathogen. Both the oral and topical administration of the UCO-SCM3 strain was capable of reducing the replication of C. acnes in skin lesions and beneficially modulating the inflammatory response. Of note, orally administered W. viridescens UCO-SMC3 induced more remarkable changes in the immune response to C. acnes than the topical treatment. However, the topical administration of W. viridescens UCO-SMC3 was more efficient than the oral treatment to reduce pathogen bacterial loads in the skin, and effects probably related to its ability to inhibit and antagonize the adhesion of C. acnes. Furthermore, a pilot study in acne volunteers demonstrated the capacity of a facial cream containing the UCO-SMC3 strain to reduce acne lesions. The results presented here encourage further mechanistic and clinical investigations to characterize W. viridescens UCO-SMC3 as a probiotic for acne vulgaris treatment.


2021 ◽  
Vol 22 (5) ◽  
pp. 2347
Author(s):  
Manu N. Capoor ◽  
Anna Konieczna ◽  
Andrew McDowell ◽  
Filip Ruzicka ◽  
Martin Smrcka ◽  
...  

Previously, we proposed the hypothesis that similarities in the inflammatory response observed in acne vulgaris and degenerative disc disease (DDD), especially the central role of interleukin (IL)-1β, may be further evidence of the role of the anaerobic bacterium Cutibacterium (previously Propionibacterium) acnes in the underlying aetiology of disc degeneration. To investigate this, we examined the upregulation of IL-1β, and other known IL-1β-induced inflammatory markers and neurotrophic factors, from nucleus-pulposus-derived disc cells infected in vitro with C. acnes for up to 48 h. Upon infection, significant upregulation of IL-1β, alongside IL-6, IL-8, chemokine (C-C motif) ligand 3 (CCL3), chemokine (C-C motif) ligand 4 (CCL4), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), was observed with cells isolated from the degenerative discs of eight patients versus non-infected controls. Expression levels did, however, depend on gene target, multiplicity and period of infection and, notably, donor response. Pre-treatment of cells with clindamycin prior to infection significantly reduced the production of pro-inflammatory mediators. This study confirms that C. acnes can stimulate the expression of IL-1β and other host molecules previously associated with pathological changes in disc tissue, including neo-innervation. While still controversial, the role of C. acnes in DDD remains biologically credible, and its ability to cause disease likely reflects a combination of factors, particularly individualised response to infection.


2020 ◽  
Vol 12 (04) ◽  
pp. 233-238
Author(s):  
Ashvini K. Yadav ◽  
Suneel Bhooshan ◽  
Allen Johnson ◽  
Dinesh P. Asati ◽  
Shashwati Nema ◽  
...  

Abstract Purpose Cutibacterium acnes (C. acnes) is an emerging pathogen that is highly resistant to antibiotics and is capable of causing persistent infections that are difficult to treat. Methods & Materials Acne vulgaris patients visiting dermatology OPD of our tertiary care hospital during the study period of 2 months were recruited. Skin swabs were collected, and the sample was processed on 5% sheep-blood agar for anaerobic culture by the GasPak method. Isolates were identified by the standard biochemical test. Antimicrobial susceptibility testing was performed for clinically relevant antibiotics by the E-strip method. The clinical response was evaluated after 1-month follow-up to the prescribed antibiotics. Results Minocycline, doxycycline, ceftriaxone, and tetracycline were the most effective antibiotics. Nonsusceptibility to clindamycin and erythromycin were observed in 11.9% and 31% isolates, respectively, with 9.5% isolates being nonsusceptible to both. For none of the antibiotics we found significant difference in the proportion of susceptible and nonsusceptible isolates between mild, moderate, and severe grades of acne vulgaris. For none of the antibiotic regimens, significant difference was observed between nonresponders and responders. Twenty-seven patients received clindamycin and among them 16 of 19 responders and 6 of 8 nonresponders yielded growth of clindamycin-susceptible isolates (p = 0.57). Conclusion We observed significant prevalence of resistant strains of C. acnes among patients with acne vulgaris. No association was observed between in vitro susceptibility results and treatment outcome.


Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2620
Author(s):  
Mi-Jin Yim ◽  
Jeong Min Lee ◽  
Hyun-Soo Kim ◽  
Grace Choi ◽  
Young-Mog Kim ◽  
...  

Acne vulgaris is a chronic inflammatory condition of skin sebaceous follicles. To explore its effects on acne vulgaris, we investigated the antibacterial and anti-inflammatory activities of Sargassum miyabei Yendo (a brown alga) ethanolic extract (SMYEE) on Cutibacterium acnes (C. acnes)-stimulated inflammatory responses, both in vivo and in vitro. To induce inflammation in vivo, C. acnes was intradermally injected into the dorsal skin of mice, to which SMYEE was applied. The antimicrobial activity of SMYEE was evaluated by the determination of minimum inhibitory concentrations (MICs). To explore in vitro anti-inflammatory effects, HaCaT cells were stimulated with C. acnes after treatment with SMYEE. The levels of IL-8 and the underlying molecular effects in C. acnes-stimulated HaCaT cells were assessed by enzyme-linked immunosorbent assay, Western blotting, and an electrophoretic mobility shift assay. Mouse skin lesions improved after treatment with SMYEE (50 μg/mouse). Neutrophil infiltration was significantly reduced in SMYEE-treated compared to SMYEE-untreated skin lesions. SMYEE reversed the C. acnes-induced increase in IL-8 levels in HaCaT cells and suppressed dHL-60 cell migration. SMYEE also inhibited C. acnes-induced phosphorylation of the extracellular signal-regulated kinase and inhibited activator protein-1 signaling. SMYEE may be a useful treatment for C. acnes-induced acne vulgaris.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Mark A. T. Blaskovich ◽  
Alysha G. Elliott ◽  
Angela M. Kavanagh ◽  
Soumya Ramu ◽  
Matthew A. Cooper

Abstract Acne is a common skin affliction that involves excess sebum production and modified lipid composition, duct blockage, colonization by bacteria, and inflammation. Acne drugs target one or more of these steps, with antibiotics commonly used to treat the microbial infection for moderate to severe cases. Whilst a number of other acne therapies are purported to possess antimicrobial activity, this has been poorly documented in many cases. We conducted a comparative analysis of the activity of common topical acne drugs against the principal etiological agent associated with acne: the aerotolerant anaerobic Gram-positive organism Propionibacterium acnes (recently renamed as Cutibacterium acnes). We also assessed their impact on other bacteria that could also be affected by topical treatments, including both antibiotic-sensitive and antibiotic-resistant strains, using broth microdilution assay conditions. Drugs designated specifically as antibiotics had the greatest potency, but lost activity against resistant strains. The non-antibiotic acne agents did possess widespread antimicrobial activity, including against resistant strains, but at substantially higher concentrations. Hence, the antimicrobial activity of non-antibiotic acne agents may provide protection against a background of increased drug-resistant bacteria.


2020 ◽  
Vol 19 ◽  
pp. 138-142
Author(s):  
Anne Couture ◽  
Valéry Lavergne ◽  
Emilie Sandman ◽  
Jean-Michel Leduc ◽  
Benoit Benoit ◽  
...  

Author(s):  
Vicky Bronnec ◽  
Hinnerk Eilers ◽  
Anika C. Jahns ◽  
Hélène Omer ◽  
Oleg A. Alexeyev

Acne vulgaris is the most common dermatological disorder worldwide affecting more than 80% of adolescents and young adults with a global prevalence of 231 million cases in 2019. The involvement of the skin microbiome disbalance in the pathophysiology of acne is recognized, especially regarding the relative abundance and diversity of Propionibacterium acnes a well-known dominant human skin commensal. Biofilms, where bacteria are embedded into a protective polymeric extracellular matrix, are the most prevalent life style for microorganisms. P. acnes and its biofilm-forming ability is believed to be a contributing factor in the development of acne vulgaris, the persistence of the opportunistic pathogen and antibiotic therapy failures. Degradation of the extracellular matrix is one of the strategies used by bacteria to disperse the biofilm of competitors. In this study, we report the identification of an endogenous extracellular nuclease, BmdE, secreted by Propionibacterium granulosum able to degrade P. acnes biofilm both in vivo and in vitro. This, to our knowledge, may represent a novel competitive mechanism between two closely related species in the skin. Antibiotics targeting P. acnes have been the mainstay in acne treatment. Extensive and long-term use of antibiotics has led to the selection and spread of resistant bacteria. The extracellular DNase BmdE may represent a new bio-therapeutical strategy to combat P. acnes biofilm in acne vulgaris.


2020 ◽  
Vol 5 (4) ◽  
pp. 187-197
Author(s):  
Swati Bhargava ◽  
Thomas Listopadzki ◽  
Sara Diletti ◽  
John K. Crane ◽  
Thomas R. Duquin ◽  
...  

Abstract. Introduction: Cutibacterium acnes is gaining recognition as a leading pathogen after orthopaedic shoulder procedures. Photodynamic therapy, a combination of light and a photosensitizer, has demonstrated antimicrobial activity against C. acnes in the treatment of acne vulgaris. We sought to evaluate the effect of photodynamic therapy using blue light and photosensitizers on C. acnes isolates from shoulder prosthetic joint infections.Methods: C. acnes strains isolated from 19 patients with shoulder PJI were exposed to blue light alone (415 nm) or in combination with photosensitizers (fluorescein, riboflavin and demeclocycline). C. acnes strains were divided into 4 categories: Highly Sensitive (HS), Sensitive (S), Weakly Sensitive (WS), Resistant to blue light.Results: 13 of 19 C. acnes strains (68%) were S or HS to blue light alone. Of these 19 strains tested, 11 were tested with blue light and fluorescein or blue light plus riboflavin. Fluorescein (1 µg/mL) enhanced the effect of blue light in 6 of 11 strains (55%). Blue light plus riboflavin (10 µg/mL) resulted enhanced killing in 3 of 11 strains (27%), but produced a paradoxical photoprotective effect in 4 of 11 strains (36%), resulting in a net decrease compared to blue light alone. Demeclocycline, however, enhanced the effect of blue light in 16 of 17 strains (94 %).Conclusions: Blue light with the addition of photosensitizers killed C. acnes from periprosthetic shoulder infections in vitro, with demeclocycline having the most pronounced effect.


2019 ◽  
Vol 14 (10) ◽  
pp. 955-967
Author(s):  
Meredith H Prysak ◽  
Cole G Lutz ◽  
Tyler A Zukofsky ◽  
Jordan M Katz ◽  
Peter A Everts ◽  
...  

Aim: The most common risk associated with intradiscal injection of platelet-rich plasma (PRP) is discitis with Cutibacterium acnes. It is hypothesized that antimicrobial activity of PRP can be enhanced through inclusion of leukocytes or antibiotics in the injectate. Materials & methods: Multiple PRP preparations of varying platelet and leukocyte counts were co-cultured with C. acnes with or without cefazolin, with viable bacterial colony counts being recovered at 0, 4, 24 and 48 hours post-inoculation. Results: A direct correlation between C. acnes recovery and granulocyte counts were observed. Conclusion: We observed the greatest antimicrobial activity with the leukocyte-rich, high platelet PRP preparation combined with an antibiotic in the injectate. However, cefazolin did not completely clear the bacteria in this assay.


2020 ◽  
Vol 8 (5) ◽  
pp. 743
Author(s):  
Konstantinos Tsikopoulos ◽  
Lorenzo Drago ◽  
Georgios Koutras ◽  
Panagiotis Givissis ◽  
Eleni Vagdatli ◽  
...  

Background: Antibiotic management of low-virulent implant-associated infections induced by Cutibacterium acnes may be compromised by multi-drug resistance development, side effects, and increased cost. Therefore, we sought to assess the effects of shock wave therapy against the above pathogen using an in vitro model of infection. Methods: We used a total of 120 roughened titanium alloy disks, simulating orthopedic biomaterials, to assess the results of radial extracorporeal shock wave therapy (rESWT) against C. acnes (ATCC 11827) biofilms relative to untreated control. In particular, we considered 1.6 to 2.5 Bar with a frequency ranging from 8–11 Hz and 95 to 143 impulses per disk to investigate the antibacterial effect of rESWT against C. acnes planktonic (free-floating) and biofilm forms. Results: Planktonic bacteria load diminished by 54% compared to untreated control after a 1.8-bar setting with a frequency of 8 Hz and 95 impulses was applied (median absorbance (MA) for intervention vs. control groups was 0.9245 (IQR= 0.888 to 0.104) vs. 0.7705 (IQR = 0.712 to 0.864), respectively, p = 0.001). Likewise, a statistically significant reduction in the amount of biofilm relative to untreated control was documented when the above setting was considered (MA for treatment vs biofilm control groups was 0.244 (IQR= 0.215–0.282) and 0.298 (IQR = 0.247–0.307), respectively, p = 0.033). Conclusion: A 50% biofilm eradication was documented following application of low-pressure and low-frequency radial shock waves, so rESWT could be investigated as an adjuvant treatment to antibiotics, but it cannot be recommended as a standalone treatment against device-associated infections induced by C. ances.


Sign in / Sign up

Export Citation Format

Share Document