2018 ◽  
Vol 5 (3) ◽  
pp. 111-118 ◽  
Author(s):  
Elmi Irmayanti Azzahra ◽  
Syarifah Iis Aisyah ◽  
Diny Dinarti ◽  
Krisantini Krisantini

Etlingera elatior is tropical ornamental plant commonly called “torch ginger” from Zingiberaceae family. Conventional breeding of E. elatior is limited by cross incompatibility, poor fruit set and low seed production.  In this study irradiation of E. elatior with Gamma ray performed to induce mutation. This study was aimed to increase morphological diversity and to obtain unique morphological characters to increase the aesthetic value of E. elatior as ornamental plants and cut flower. Two genotypes of E. elatior, red and white flowers, were tested. The LD20, LD35, and LD50 were determined following intermittent (split dose) Gamma irradiation with a two-hour gap between each gamma ray shot. Red genotype E. elatior explants were irradiated with dose of 3 + 3 Gy (LD20); 4 + 4 Gy (LD35) and 5 + 5 Gy (LD50); white genotype were irradiated with a dose of 2 + 2 Gy (LD20); 2.8 + 2.8 Gy (LD35) and 3.7 + 3.7 Gy (LD50). Non-irradiated explants were set as control.  The results of this study indicated that the increase in dose of gamma ray irradiation changed shoot length and number of leaves in the red genotype per explant as compared to control. Morphological changes occurred in leaf shape at 5 + 5 Gy and 3.7 + 3.7 Gy and formation of variegated leaves at 2.8 + 2.8 Gy and 5 + 5 Gy. Keywords: mutation breeding, ornamental plant, split irradiation dose, torch ginger, Zingiberaceae


Agrikultura ◽  
2016 ◽  
Vol 27 (3) ◽  
Author(s):  
Dedeh Kurniasih ◽  
Dedi Ruswandi ◽  
Murdaningsih Haeruman Karmana ◽  
Warid Ali Qosim

ABSTRACTVariability of mutant genotypes chrysanthemum (Dendranthema grandiflora Tzvelv.) fifth generationsthrough gamma iIrradiationDendranthema grandiflorum Tzvelv. is a major floriculture in Indonesia, and it is one of the five most popular flowers in Indonesia. Chrysanthemum varieties in Indonesia is largely the introduced varieties. Chrysanthemum hybridization especially for decorative flower type in order to obtain superior varieties is relatively difficult, so the mutation breeding is one approach that can be taken to get the chrysanthemum varieties with different phenotypic performances with the that parent.The purpose of this study was to obtain information genetic and phenotypic variability characters observed on chrysanthemum irradiated with gamma ray. The experiment was conducted by an experimental method using a randomized block design (RBD). The treatments consisted of 37 mutants genotypes and 11 genotypes chrysanthemums parent as controls with two replications. The results of this study indicated that the genotypes tested had broad genetic and phenotipic variation for the plant height, flower diameter, number of flower and neck lengths.Key words: Chrysanthemum mutants, Variability, Gamma ray irradiation.ABSTRAKKrisan merupakan komoditas tanaman hias utama di Indonesia dan paling banyak diminati masyarakat. Varietas-varietas krisan yang beredar di Indonesia sebagian besar merupakan varietas introduksi. Persilangan krisan khususnya untuk tipe bunga dekoratif dalam rangka memperoleh varietas unggul relatif sulit dilakukan, sehingga pemuliaan mutasi merupakan salah satu pendekatan yang dapat ditempuh untuk mendapatkan varietas krisan dengan penampilan fenotipik yang berbeda dengan induknya. Tujuan penelitian ini adalah untuk mendapatkan informasi variabilitas genetik dan fenotipik karakter-karakter yang diamati pada tanaman krisan yangd iradiasi dengan sinar gamma. Percobaan dilakukan dengan metode eksperimen menggunakan Rancangan Acak Kelompok (RAK). Perlakuan terdiri atas 37 genotipe mutan krisan dan 11 genotipe tetua krisan sebagai kontrol dengan dua ulangan. Hasil penelitian menunjukkan bahwa genotipe-genotipe yang diuji memiliki variabilitas yang luas untuk karakter tinggi tanaman, diameter bunga, jumlah kuntum dan panjang tangkai bunga.Kata kunci: Mutan krisan, Variabilitas, Sinar gamma


2021 ◽  
pp. 320-325
Author(s):  
Reina Céspedes ◽  
Noel Arrieta ◽  
Miguel Barquero ◽  
Ana Abdelnour ◽  
Nielen Stephan ◽  
...  

Abstract Coffee is one of the most commercially available raw materials, being the tropical product with the highest market value in the world. In Costa Rica it is the third most important product for agricultural exports and provides the main income for many families in the country. However, coffee is under threat due to coffee leaf rust disease (CLR). Mutation breeding in coffee is a promising approach to develop new varieties resistant to CLR. As a new technology for coffee, basic tests related to mutation induction need to be done. The plant material used was Coffea arabica var. 'Venecia' seeds, with a moisture content of 27.3%. The applied irradiation doses were 0, 80, 100, 120, 140, 160 and 180 Gy. For each treatment, three replicates of 200 g were used, with a seed number range of 765-808 units per replicate. The irradiated seeds were planted on the same day. Eighty days after treatment the number of seedlings was quantified, the hypocotyl height and radicle length were measured and the opening of cotyledons was determined for each dose. The effects of the radiation doses on seed germination frequency were recorded. At the dose of 80 Gy, germination was reduced over the control by 9.65%, at 100 Gy by 34.06%, at 120 Gy by 52.76%, at 140 Gy by 60.24%, at 160 Gy by 65.56% and at 180 Gy by 75.40%. Seedling growth was affected and a delay in opening of the cotyledons was observed at higher doses. This radiosensitivity test, based on seed germination as compared with unirradiated control, revealed that the LD50 for the variety tested is in the range 100-120 Gy experimentally, and according to the regression is 125 ± 30 Gy. This dose will be used for further bulk experiments and is of great importance, because the LD50 is considered as the range where the appearance of useful mutations in breeding programmes is favoured. The establishment of these parameters is a necessary advance to continue with measurements of genetic and phenotypical parameters to implement mutation breeding in coffee looking for new sources of resistance against CLR.


2021 ◽  
pp. 103-110
Author(s):  
Suman Bakshi ◽  
Johar Singh ◽  
Sanjay J. Jambhulkar

Abstract Stripe rust, also known as yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a major threat to wheat production leading to yield losses up to 84%. Due to climate change, new races of the yellow rust pathogen are appearing for which no durable source of resistance has been observed in the present high-yielding varieties. A mutation breeding programme was initiated in two popular varieties, namely PBW343 and HD2967, using gamma-ray and electron beam irradiation. Gamma-ray doses of 250, 300 and 350 Gy and electron beam doses of 150, 200 and 250 Gy were used for seed irradiation. The M2 population was screened in the field from seedling to adult plant stage by spraying a mixture of urediniospores of Pst pathotypes. Disease severity was recorded as the percentage of leaf area covered by the rust pathogen following a modified Cobb's scale. A total of 52 putative yellow rust resistant mutants in HD2967 and 63 in PBW343 were isolated. The number of mutants was higher in the electron beam irradiated population compared with gamma-rays. The absence of sporulation and spore production of the rust pathogen on the mutants indicated resistance. Mutant plants showing seedling resistance also showed resistance at adult plant stage. Seed yield and its contributing characters were better in the mutants compared with the parents. These rust resistant mutants could be novel sources of stripe rust or yellow rust resistance. The plant-to-row progenies of these mutants were confirmed and characterized in the M3 generation.


2021 ◽  
pp. 65-75
Author(s):  
Rusli Ibrahim

Abstract Malaysia has made substantial progress in plant mutation breeding with the use of nuclear techniques and related biotechnologies, not only in the development of new mutant varieties but also in the establishment of an excellent nuclear research centre. A total of 53 mutant varieties have been developed, including rice Oryza sativa (19), banana Musa acuminata (one), groundnut Arachis hypogaea (two), orchid Dendrobium 'Sonia' (six), chrysanthemum Chrysanthemum morifolium (seven), hibiscus Hibiscus rosa-sinensis (three), roselles Hibiscus sabdariffa L. (three) and other ornamental and landscaping plants (12). Most of the new ornamental varieties have been developed by both acute and chronic gamma-ray irradiation of seeds, rooted cuttings, bulbs and tissue cultures. Food crops that have an economic impact on sustainable agricultural production are mutant varieties of banana ('Novaria') and rice (MRQ74, MR219-9 and MR219-4). 'Novaria' is a selection made from a mutant, 'GN-60A', of 'Grande Naine' (AAA Musa) identified from gamma-ray treated populations of the Biotechnology Laboratory in Seibersdorf, Austria. 'Novaria' was the first mutant variety, officially released in 1995 by the Malaysian Nuclear Agency as a new variety for its improved characteristics such as early flowering, short stature and high yield. MRQ74 is a type of high-quality fragrant rice with newly induced traits such as resistance to blast, long and slender grain shape, non-sticky and with the elongation properties of cooked rice similar to those of Basmati-type rice. It is an indirect mutant variety released in 2003 and one of its parental lines for cross-breeding was the mutant 'Mahsuri', which was developed through mutation breeding using gamma-rays. In 2014, two new mutant varieties of rice, 'MR219-9' and 'MR219-4', which are drought tolerant, high yielding and resistant to blast, were selected from gamma irradiated material. Despite these achievements, applications of induced mutation have decreased during the past 10 years due to reduced funding. Mutation breeding is still a promising technique for the development of novel varieties which in combination with advanced molecular genetics can bring plant mutation breeding into a new era.


Author(s):  
S. Dewanjee ◽  
K. K. Sarkar

To enhance genetic variation for desirable traits, the present study on mutation breeding in mungbean crop was initiated with two varieties K-851 and Sona mung, both treated with four doses of gamma rays (100, 200, 300 and 400 Gy). The gamma ray has been widely used for the improvement of various traits of crops, Songsri et al. (2011) and Aney (2013). Mutations could be induced through physical and chemical mutagens, Ahloowalia et al. (2004), Chopra (2005), Jain (2005) and Sangsiri (2005). Auti. (2012) reported that induced mutation in mungbean plays an important role in creating genetic variability, he also stated that high yielding varieties in mungbean is possible by the exploitation of mutation breeding. For yield and its attributing traits, selection was practiced on the basis of the traits showing high positive correlation with primary trait like yield per plant. In Cv. Sona mung, number of branches per plant, clusters per plant, pod per plant, pod per cluster had shown significant positive effect whereas, plant height, number of branches per plant, pod per plant and 100 seed weight showed significant positive effect in Cv. K-851. Coefficient of variation for most of the traits was successively reduced in advanced generations indicating attainment of uniformity within families in the advance generations. Four high yielding mutant families accompanied by high harvest index were identified in M7 generation from 200 and 400 Gy of Sona mung and 200 and 300 Gy of K-851 and families from 200 Gy also showed synchronous maturity for about 80 percent pods. Some of the high yielding families from 300 Gy of K-851 had reduced test weight, thus providing scope for development of high yielding small seeded varieties in mungbean.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Feng Li ◽  
Akira Komatsu ◽  
Miki Ohtake ◽  
Heesoo Eun ◽  
Akemi Shimizu ◽  
...  

Abstract Loss of seed shattering has been regarded as a key step during crop domestication. Mutagenesis contributes to the development of novel crop cultivars with a desired seed-shattering habit in a relatively short period of time, but also to uncovering the genetic architecture of seed shattering. ‘Minamiyutaka’, a non-shattering indica rice cultivar, was developed from the easy-shattering cultivar ‘Moretsu’ by mutation breeding via gamma-ray irradiation. In present study, we observed significant differences in shattering habit, breaking tensile strength, and abscission zone structure between ‘Moretsu’ and ‘Minamiyutaka’. Whole-genome mutation analysis of ‘Minamiyutaka’ newly identified a 13-bp deletion causing defective splicing in exon 3 of the OsSh1 gene which has previously been referred to as a candidate for controlling seed shattering. Using CRISPR/Cas9 gene editing, we demonstrated that loss-of-function mutation in OsSh1 causes non-shattering in rice. Furthermore, gene expression analysis suggests that OsSh1 may function downstream of qSH1, a known key gene involved in abscission zone differentiation. Nucleotide diversity analysis of OsSh1 in wild rice accessions and cultivars revealed that OsSh1 has been under strong selection during rice domestication, and a missense mutation might have contributed to the reduction of seed shattering from the wild progenitors to cultivated rice.


2020 ◽  
Vol 36 (1) ◽  
pp. 97
Author(s):  
Nandariyah Nandariyah ◽  
Endang Yuniastuti ◽  
Sukaya Sukaya ◽  
Sonia Ika Yudhita

<p><a name="_Hlk39513249"></a><span lang="EN-US">Raja Bulu is one of the banana varieties favored by the community because of its thick fruit flesh and sweet taste. However, its parthenocarpic characteristic and vegetative propagation make this banana variety has limited genetic variation. Attempt to improve the genetic variation was conducted through induced mutation breeding using gamma-ray mutagens. This research aimed to select M1V1 generation of Raja Bulu banana (<em>Musa paradisiaca</em> Linn.) obtained by gamma rays’ irradiation for their growth traits which are expected to produce banana varieties that have an early maturity and high yield. This study used a randomized complete block design without replication by observing the generative growth of each individual of Raja Bulu banana irradiated by gamma rays and without radiation as a control. The results showed that gamma-ray irradiation treatment caused Raja Bulu banana to be harvested earlier and produced higher fruit weight than controls. The gamma-ray irradiation had a random influence on Raja Bulu bananas. The 10 Gy gamma-ray irradiation dosage influenced the morphological diversity in the generative phase of Raja Bulu banana. The treatment of gamma irradiation resulted in 5 individual plants that flowered and matured earlier as compared to controls</span><span lang="IN">.</span></p>


2021 ◽  
pp. 451-458
Author(s):  
Li-bin Zhou ◽  
Yan Du ◽  
Zhuo Feng ◽  
Tao Cui ◽  
Xia Chen ◽  
...  

Abstract Mutation breeding induced by irradiation with highly energetic photons and ion beams is one of the important methods to improve plant varieties, but the mutagenic effects and molecular mechanisms are often not entirely clear. Traditional research is focused on phenotype screening, chromosome aberration tests and genetic variation analysis of specific genes. The whole genome sequencing technique provides a new method to understand and undertake the comprehensive identification of mutations caused by irradiations with different linear energy transfer (LET). In this study, ten Arabidopsis thaliana M3 lines induced by carbon-ion beams (CIB) and ten M3 lines induced by gamma-rays were re-sequenced by using the Illumina HiSeq sequencing platform, and the single base substitutions (SBSs) and small insertions or deletions (indels) were analysed comparatively. It was found that the ratio of SBSs to small indels for M3 lines induced by CIB was 2.57:1, whereas the ratio was 1.78:1 for gamma-rays. The ratios of deletions to insertions for carbon ions and gamma-rays were 4.8:1 and 2.8:1, respectively. The single-base indels were more prevalent than those equal to or greater than 2 bp in both CIB and gamma-ray induced M3 lines. Among the detected SBSs, the ratio of transitions to transversions induced by carbon-ion irradiation was 1.01 and 1.42 for gamma-rays; these values differ greatly from the 2.41 reported for spontaneous substitutions. This study provides novel data on molecular characteristics of CIB and gamma-ray induced mutations at the genome-wide scale. It can also provide valuable clues for explaining the potential mechanism of plant mutation breeding by irradiations with different LETs.


Sign in / Sign up

Export Citation Format

Share Document