Mechanical Properties and Biodegradability of Polylactic Acid/Acrylonitrile Butadiene Styrene with Cellulose Particle Isolated from Nypa Fruticans Husk

Author(s):  
M. S. Rasidi ◽  
L. C. Cheah ◽  
A. M. Nasib

Polylactic acid is a biodegradable polymer derived from renewable resources, showing potentials in replacing traditional petroleum-based polymers, yet its brittleness limits its applications. Thus, blending polylactic acid with acrylonitrile butadiene styrene as well as incorporation of fillers were used to enhance the mechanical and biodegradability properties of polylactic acid by extrusion compounding. The aims of this study to produce and investigate PLA/ABS blend incorporated with natural filler, NFH and IC to improve the properties pf PLA/ABS blends. Two types of fillers used were Nypa fruticans husk and isolated cellulose from Nypa fruticans husk which was obtained by using Soxhlet extraction. Transform Infrared spectroscopy analysis was used to characterize and verified the extracted substance was isolate cellulose. Tensile, impact and biodegradation test were conducted to investigate the mechanical and biodegradability properties. The optimum blend ratio for polylactic acid/acrylonitrile was 75/25 php base on previous studies, and it was found that the incorporation of both fillers, Nypa fruticans husk and isolated cellulose from Nypa fruticans husk had decreased the tensile strength, elongation at break and impact strength of the composite however increased the Young’s Modulus and biodegradation weight loss. Meanwhile, at similar filler content, the tensile strength, Young’s modulus and biodegradation weight loss of polylactic acid/acrylonitrile butadiene styrene blend incorporated with isolated cellulose were higher value compared to polylactic acid/acrylonitrile butadiene styrene blend incorporated Nypa fruticans husk. Furthermore, morphological studies showed a well-coated filler by matrix and reduction of filler pull out when isolated cellulose was incorporated in polylactic acid/acrylonitrile butadiene styrene blend. Therefore, it was found that the incorporation of isolated cellulose in polylactic acid/acrylonitrile butadiene styrene blend, shows higher mechanical and biodegradation properties than polylactic acid/acrylonitrile butadiene styrene blend incorporated with Nypa fruticans husk.

2014 ◽  
Vol 1052 ◽  
pp. 220-225 ◽  
Author(s):  
Sirirat Wacharawichanant ◽  
Parida Amorncharoen ◽  
Ratiwan Wannasirichoke

The effects of styrene-co-maleic anhydride (SMA) compatibilizer on the mechanical thermal and morphological properties of polyoxymethylene (POM)/acrylonitrile-butadiene-styrene (ABS) blends were inverstigated. POM/ABS blends without and with SMA compatibilizer were prepared by an internal mixer and molded by compression molding. It was found that the dispersion of ABS phase and compatibility could not improve by using SMA compatibilizer in POM/ABS blends due to SMA can be miscible with ABS phase more than POM phase. The addition of ABS in a range of 10-30 wt% could improve the Young’s modulus of POM. Impact strength, tensile strength and percent strain at break of POM/ABS blends decreased with increasing ABS content. The addition of compatibilizer improved Young’s modulus of POM/ABS (60/40, 50/50) blends. The addition of ABS increased the degradation temperature of POM, while SMA compatibilizer did not improve the degradation of POM/ABS blends.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2655 ◽  
Author(s):  
Marc Delgado-Aguilar ◽  
Rita Puig ◽  
Ilija Sazdovski ◽  
Pere Fullana-i-Palmer

Circular economy comes to break the linear resource to waste economy, by introducing different strategies, two of them being: using material from renewable sources and producing biodegradable products. The present work aims at developing polylactic acid (PLA), typically made from fermented plant starch, and polycaprolactone (PCL) blends, a biodegradable polyester, to study their potential to be used as substitutes of oil-based commodity plastics. For this, PLA/PCL blends were compounded in a batch and lab scale internal mixer and processed by means of injection molding. Tensile and impact characteristics were determined and compared to different thermoplastic materials, such as polypropylene, high density polyethylene, polystyrene, and others. It has been found that the incorporation of PCL into a PLA matrix can lead to materials in the range of 18.25 to 63.13 megapascals of tensile strength, 0.56 to 3.82 gigapascals of Young’s modulus, 12.65 to 3.27 percent of strain at maximum strength, and 35 to 2 kJ/m2 of notched impact strength. The evolution of the tensile strength fitted the Voigt and Reuss model, while Young’s modulus was successfully described by the rule of mixtures. Toughness of PLA was significantly improved with the incorporation of PCL, significantly increasing the energy required to fracture the specimens. Blends containing more than 20 wt% of PCL did not break when unnotched specimens were tested. Overall, it was found that the obtained PLA/PCL blends can constitute a strong and environmentally friendly alternative to oil-based commodity materials.


2016 ◽  
Vol 1133 ◽  
pp. 180-184
Author(s):  
Azlinda Abdul Ghani ◽  
Ragunathan Santiagoo ◽  
Tunku Alisha Zanariah Tunku Ozir ◽  
Sam Sung Ting ◽  
Hanafi Ismail

Polypropylene (PP)/ recycled acrylonitrile butadiene rubber (NBRr)/ banana skin powder (BSP) composites with different BSP filler loading (5,10,15,20,25,30wt. %) were studied. Composites were prepared by using heated two roll mill at 180 °C. The effect of 3-aminopropyltrimethoxysilane (APS) as coupling agent were evaluated. Mechanical properties such as tensile strength, Young’s Modulus and Elongation at Break (Eb) of the different composites were investigated. Tensile strength and Elongation at break of the composites were found to be decreasing with increasing BSP filler loading. The Young’s Modulus was found to be increasing with BSP filler loading due increment of composite rigidity. At similar BSP filler loadings, γ-APS treated BSP composites shows higher tensile strength and Young’s Modulus. This may due to strong bonding between BSP filler and PP/NBRr matrices in the presence of APS silane coupling agent. The morphological studies strongly support this findings whereby good interaction and less pull outs of BSP filler was noticed in the presence of APS silane.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 149
Author(s):  
Bartosz Pszczółkowski ◽  
Konrad W. Nowak ◽  
Wojciech Rejmer ◽  
Mirosław Bramowicz ◽  
Łukasz Dzadz ◽  
...  

The objective of this study was to compare three methods for determining the Young’s modulus of polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) samples. The samples were manufactured viathe fused filament fabrication/fused deposition modeling (FFF/FDM) 3D printing technique. Samples for analysis were obtained at processing temperatures of 180 °C to 230 °C. Measurements were performed with the use of two nondestructive techniques: the impulse excitation technique (IET) and the ultrasonic (US) method. The results were compared with values obtained in static tensile tests (STT), which ranged from 2.06 ± 0.03 to 2.15 ± 0.05 GPa. Similar changes in Young’s modulus were observed in response to the processing temperatures of the compared methods. The values generated by the US method were closer to the results of the STT, but still diverged considerably, and the error exceeded 10% in all cases. Based on the present findings, it might be concluded that the results of destructive and nondestructive tests differ by approximately 1 GPa.


2015 ◽  
Vol 754-755 ◽  
pp. 54-58 ◽  
Author(s):  
M. Syahmie Rasidi ◽  
H. Salmah ◽  
Pei Leng Teh ◽  
Hanafi Ismail

The main purpose of incorporating Nypa Fruticans (NF) into Polylactic Acid (PLA)/Recycled Low Density Polyethylene (rLDPE) biocomposites is to decrease costs and change the properties. Polyethylene–co–acrylic acid (PEAA) was used as a compatibilizer. The effect of NF content and PEAA on the mechanical properties and morphology of the biocomposites were investigated. Results show that the effect of NF content increased Young’s modulus but decreased the tensile strength and elngation at break of PLA/rLDPE/NF biocomposites. It was found that incorporation of compatibilizer (PEAA) increased the tensile strength and Young’s modulus but decreased the elongation at break of compatibilized biocomposites. Scanning electron microscopy (SEM) study of the tensile fracture surface of the biocomposites indicated that the presence of PEAA improved the interfacial interaction between Nypa Fruticans and LDPE matrix.


2019 ◽  
Vol 28 (8-9) ◽  
pp. 589-597
Author(s):  
Manokaran Vadivel ◽  
Moses Suresh Chandra Kumar ◽  
Jabbar Abbas Mohaideen ◽  
Muthukaruppan Alagar ◽  
Murugesan Sankarganesh ◽  
...  

Hybrid matrices (epoxidized of ethylene–propylene–diene monomer (eEPDM) -g-aminopropyltriethoxysilane (APTES)/hydroxyl terminated polydimethylsiloxane (HTPDMS)/polyurethane (PU)) were developed based on eEPDM with 3-APTES coupling agent and varying weight percentages (0.75, 1.50, 2.25, and 3.00 wt%) of PU prepolymer as coreactant using 7.5 wt% of HTPDMS as chain extender using suitable experimental conditions. The formation of hybrid matrices and their structure were characterized by Fourier transform infrared (FTIR). The thermal and morphological properties of the hybrid matrices were analyzed using differential scanning calorimetry and scanning electron microscope, respectively. Mechanical properties (tensile strength, elongation at break (%), Young’s modulus, and hardness) were characterized as per ASTM standards. Data resulted from mechanical studies, it was noticed that the incorporation of 3-APTES, HTPDMS, and PU into eEPDM has improved the elongation at break (%) and lowered the values of tensile strength, Young’s modulus, and hardness according to the percentage concentration. Morphological studies indicate the presence of heterogeneous morphology. Data obtained from different studies, it suggested that the hybrid matrices developed in the present work can be used as cable insulates for high-performance industrial and engineering applications.


2017 ◽  
Vol 37 (7) ◽  
pp. 699-706 ◽  
Author(s):  
Maksym Rybachuk ◽  
Charlène Alice Mauger ◽  
Thomas Fiedler ◽  
Andreas Öchsner

Abstract The anisotropic mechanical properties of parts that are fabricated using acrylonitrile butadiene styrene (ABS) polymer relative to part-built orientation employing the fused deposition modelling process are reported in this work. ABSplus-P430 polymer was used to investigate the effects of infill orientation on the parts’ mechanical properties under tensile and compression loading. Results revealed that infill orientation strongly affected the tensile properties of fabricated ABS samples. Specifically, the values for Young’s modulus ranged from ~1.5 to ~2.1 GPa, ultimate tensile strength from ~12.0 to ~22.0 MPa, yield strength from ~1.0 to ~21.0 MPa, and elongation-at-break from ~0.2 to ~4.8% for different infill orientations. Samples with infill orientation aligned to the vertical (i.e. Z-) axis displayed the highest values relative to all other infill orientations investigated. Mechanical properties anisotropy was lower for parts under compressive loading, such that the Young’s modulus, ultimate compressive and yield strength were weakly correlated with infill orientation apart from samples whose built orientation was aligned at 45° to the vertical Z-axis. The latter samples displayed inferior mechanical properties under all compressive tests. The effects of sample gauge thickness on tensile properties and ABS sample micro- and bulk- hardness with respect to infill orientation are also discussed.


2011 ◽  
Vol 695 ◽  
pp. 170-173 ◽  
Author(s):  
Voravadee Suchaiya ◽  
Duangdao Aht-Ong

This work focused on the preparation of the biocomposite films of polylactic acid (PLA) reinforced with microcrystalline cellulose (MCC) prepared from agricultural waste, banana stem fiber, and commercial microcrystalline cellulose, Avicel PH 101. Banana stem microcrystalline cellulose (BS MCC) was prepared by three steps, delignification, bleaching, and acid hydrolysis. PLA and two types of MCC were processed using twin screw extruder and fabricated into film by a compression molding. The mechanical and crystalline behaviors of the biocomopsite films were investigated as a function of type and amount of MCC. The tensile strength and Young’s modulus of PLA composites were increased when concentration of MCC increased. Particularly, banana stem (BS MCC) can enhance tensile strength and Young’s modulus of PLA composites than the commercial MCC (Avicel PH 101) because BS MCC had better dispersion in PLA matrix than Avicel PH 101. This result was confirmed by SEM image of fractured surface of PLA composites. In addition, XRD patterns of BS MCC/PLA composites exhibited higher crystalline peak than that of Avicel PH 101/PLA composites


2012 ◽  
Vol 3 (1) ◽  
pp. 13-26
Author(s):  
Myrtha Karina ◽  
Lucia Indrarti ◽  
Rike Yudianti ◽  
Indriyati

The effect of castor oil on the physical and mechanical properties of bacterial cellulose is described. Bacterial cellulose (BC) was impregnated with 0.5–2% (w/v) castor oil (CO) in acetone–water, providing BCCO films. Scanning electron micrographs revealed that the castor oil penetrated the pores of the bacterial cellulose, resulting in a smoother morphology and enhanced hydrophilicity. Castor oil caused a slight change in crystallinity indices and resulted in reduced tensile strength and Young's modulus but increased elongation at break. A significant reduction in tensile strength and Young's modulus was achieved in BCCO films with 2% castor oil, and there was an improvement in elongation at break and hydrophilicity. Impregnation with castor oil, a biodegradable and safe plasticiser, resulted in less rigid and more ductile composites.


Sign in / Sign up

Export Citation Format

Share Document