scholarly journals Magnetically modified corn cob as a new low-cost biosorbent for removal of Cu (II) and Zn (II) from wastewater

2020 ◽  
Vol 9 (2) ◽  
pp. 96-102
Author(s):  
Ajeng Yulianti Dwi Lestari ◽  
Achmad Chafidz ◽  
Anindita Ratih Hapsari ◽  
Wildan Denly Elnaufal ◽  
Silvi Nurukma Indri ◽  
...  

Wastewater containing heavy metals can potentially harm the human and living organisms and also damage the environment and ecosystem. Wastewater containing total copper (Cu) and zinc (Zn) over the normal threshold will result in Wilson's disease and digestive health, respectively. One of the most widely used methods to remove heavy metals from wastewater is adsorption. One type of adsorbent that has gained interest among researchers was biomass-based adsorbent or biosorbent. In this work, magnetic modification was used to increase the adsorption capacity of the biosorbent. Therefore, the aim of this study was to determine the effect of magnetic modification of corncobs as biosorbent on the adsorption of Cu(II) and Zn(II) heavy metals from an aqueous solution. Magnetic modification with FeCl3.7H2O on corncobs has successfully increased the adsorption capability of Zn(II) and Cu(II) from aqueous solution. The optimum modification ratios for the adsorption of Zn(II) and Cu(II) were 1:2 and 2:1. The adsorption of these both heavy metals took place at temperature of 50°C with the adsorbent doses of 1 g and 1.5 g for Cu(II) and Zn(II), respectively. The highest adsorption percentages for the adsorption of Zn(II) and Cu(II) were 89.3% and 89.2%, respectively. Whereas, the maximum adsorption capacities of Cu(II) and Zn(II) were 75.76 mg/g and 63.93 mg/g, respectively. The adsorption mechanism of Zn(II) and Cu(II) has followed the Freundlich isothermal adsorption model.

Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 486
Author(s):  
Alcina Johnson Sudagar ◽  
Slávka Andrejkovičová ◽  
Fernando Rocha ◽  
Carla Patinha ◽  
Maria R. Soares ◽  
...  

Metakaolins (MKs) prepared from low-grade kaolins located in the Alvarães (A) and Barqueiros (B) regions of Portugal were used as the aluminosilicate source to compare their effect on the compressive strength and heavy metal adsorption of geopolymers. Natural zeolite, an inexpensive, efficient adsorbent, was used as an additive in formulations to enhance geopolymers’ adsorption capacities and reduce MK utilization’s environmental footprint. Geopolymers were synthesized with the replacement of MK by zeolite up to 75 wt.% (A25, B25—25% MK 75% zeolite; A50, B50—50% MK 50% zeolite; A75, B75—75% MK 25% zeolite; A100, B100—100% MK). The molar ratios of SiO2/Al2O3 and Na2O/Al2O3 were kept at 1 to reduce the sodium silicate and sodium hydroxide environmental impact. Geopolymers’ crystallography was identified using X-ray diffraction analysis. The surface morphology was observed by scanning electron microscopy to understand the effect of zeolite incorporation. Chemical analysis using X-ray fluorescence spectroscopy and energy dispersive X-ray spectroscopy yielded information about the geopolymers’ Si/Al ratio. Compressive strength values of geopolymers obtained after 1, 14, and 28 days of curing indicate high strengths of geopolymers with 100% MK (A100—15.4 MPa; B100—32.46 MPa). Therefore, zeolite did not aid in the improvement of the compressive strength of both MK-based geopolymers. The heavy metal (Cd2+, Cr3+, Cu2+, Pb2+, and Zn2+) adsorption tests exhibit relatively higher adsorption capacities of Barqueiros MK-based geopolymers for all the heavy metals except Cd2+. Moreover, zeolite positively influenced divalent cations’ adsorption on the geopolymers produced from Barqueiros MK as B75 exhibits the highest adsorption capacities, but such an influence is not observed for Alvarães MK-based geopolymers. The general trend of adsorption of the heavy metals of both MK-based geopolymers is Pb2+ > Cd2+ > Cu2+ > Zn2+ > Cr3+ when fitted by the Langmuir isotherm adsorption model. The MK and zeolite characteristics influence geopolymers’ structure, strength, and adsorption capacities.


2020 ◽  
Vol 9 (1) ◽  
pp. 318-327

Adsorption is a widely used technique for wastewater remediation. The process is effective and economical for the removal of various pollutants from wastewater, including dyes. Moreover, Besides commercial activated carbon, different low-cost materials such as agricultural and industrial wastes are now used as adsorbents. The present review focused on the removal of a teratogenic and carcinogenic dye, orange G (OG) via adsorption using several adsorbents, together with the experimental conditions and their adsorption capacities. Based on the information compiled, various adsorbents have shown promising potential for OG removal.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hakan Çelebi ◽  
Gülden Gök ◽  
Oğuzhan Gök

Abstract Recently, the search for low-cost eco-friendly adsorbents has become one of the main objectives of researchers. The aim of this study was to test the removal of four heavy metals, namely lead (Pb), zinc (Zn), nickel (Ni) and cadmium (Cd), from a simulated watery solution using brewed tea waste as a potentially suitable adsorbent. The effects of pH levels (2.0–6.0), adsorbent amount (0.1–5.0 g), contact times (1–150 min.) were examined throughout the adsorption process. The results of the experiments showed that the heavy metals elimination yields had an inverse relationship with pH and a linear relationship between the other parameters. The optimum pH for the removal of the heavy metals was between 4.0 and 5.0 in the case of the brewed tea waste. Equilibrium times of 2, 10, 30 and 5 min were required for the adsorption of Pb, Zn, Ni, Cd onto Camellia sinensis, respectively. Based on the results of this study it can be said that brewed tea waste has a high potential to remove heavy metals from aqueous solutions. The maximum adsorption capacities were calculated as 1.197, 1.457, 1.163 and 2.468 mg/g, for Pb, Zn, Ni and Cd, respectively, by fitting the equilibrium data to the Langmuir isotherm model.


2019 ◽  
Vol 800 ◽  
pp. 151-156
Author(s):  
Yamina Chergui ◽  
Abdelkader Iddou ◽  
Hafida Hentit ◽  
Abdallah Aziz ◽  
Jean Claude Jumas

The objective of this study was the synthesis of various activated carbons from grape marc issued from oenological by-product as a biosorbent. The biosolid was then applied to remove an industrial dye (red bemacid ETL) in aqueous solution. Activation of the synthesized charcoal was carried out using a solution of zinc chloride induced by two physical methods (microwaves and heating at 300°C). The obtained materials are characterized by FTIR and SEM methods. Results from batch adsorption tests have shown that pH solution, initial dye concentration and contact time affect the adsorption mechanism. Removal of the industrial dye revealed second order kinetics, exothermic adsorption and isothermal adsorption of BET type.


2016 ◽  
Vol 835 ◽  
pp. 378-385 ◽  
Author(s):  
Ibrahim Umar Salihi ◽  
Shamsul Rahman Mohamed Kutty ◽  
Mohamed Hasnain Isa ◽  
Usman Aminu Umar ◽  
Emmanuel Olisa

Industrial wastewater containing toxic pollutants such as heavy metals tends to contaminate the environment once it is release without proper treatment. Heavy metals are toxic to both human and other living organisms. It is necessary to treat industrial wastewater polluted with heavy metals prior to its discharge into the receiving environment. In this study, low cost adsorbent was generated from sugarcane bagasse through incineration. The prepared adsorbent “microwave incinerated sugarcane bagasse ash” (MISCBA) was used in removing copper and zinc from aqueous solution. Parameters of importance such as pH, contact time and adsorbent dosages are studied to investigate their effects on the adsorption of copper and zinc. Maximum adsorption was observed at pH 6.0, contact time of 180 minutes and adsorbent dosage of 10 g/L. Zinc removal follows Langmuir isotherm model with correlation coefficient of 0.9291. Copper adsorption follows both Langmuir and Freundlich isotherm model with correlation coefficient of 0.9181 and 0.9742, respectively. Removal capacities of 38.4 mg/g and 20.4 mg/g were obtained for copper and zinc, respectively. Application of MISCBA as low - cost adsorbent have shown significant outcome in removal of copper and zinc from aqueous solution.


2018 ◽  
Vol 9 (3) ◽  
pp. 202-212 ◽  
Author(s):  
Mohammad Nasir Uddin ◽  
Jahangir Alam ◽  
Syeda Rahimon Naher

The adsorption capacity of chromium(III) from synthetic waste water solution by a low cost biomaterial, Jute Stick Powder (JSP)was examined. A series of batch experiments were conducted at different pH values, adsorbent dosage and initial chromium concentration to investigate the effects of these experimental conditions. To analyze the metal adsorption on to the JSP, most common adsorption isotherm models were applied. To study the reaction rate, the kinetic and diffusion models were also applied. The morphological structure and variation of functional groups in the JSP before and after adsorption was examined by scanning electron microscope (SEM) and Fourier transform infrared spectrometry (FT-IR). Maximum chromium removal capacities of JSP was 84.34%with corresponding equilibrium uptake 8.4 mg/g from 50 mg/L of synthetic metal solution in 60 minutes of contact time at pH = 6.0 and 28 °C with continuous stirring at 180 rpm. The percent sorption of the biomass decreased with increasing concentration of metal ion but increased with decreasing pH, increasing contact time and adsorbent doses. Data for this study indicated a good correspondence with both isotherms of Langmuir and Freundlich isotherm. The analysis of kinetic indicated that Chromium was consistent with the second-order kinetic adsorption model. The rate of removal of Cr(III) ions from aqueous solution by JSP was found rapid initially within 5-30 minutes and reached in equilibrium in about 40 minutes. The investigation revealed that JSP, a low cost agricultural byproduct, was a potential adsorbent for removal of heavy metal ions from aqueous solution.


2018 ◽  
Vol 78 (4) ◽  
pp. 837-847 ◽  
Author(s):  
Sung-Whan Yu ◽  
Hee-Jeong Choi

Abstract In this study, hybrid beads, which are made by mixing persimmon leaf and chitosan, was used to remove Pb(II) and Cd(II) from aqueous solution. According to the Fourier transform infrared spectrometry (FT-IR) analysis, the hybrid bead has a structure that enables the easy adsorption of heavy metals because it has carboxylic, carbonyl groups, O-H carboxylic acid, and bonded -OH groups. The adsorption of Pb(II) and Cd(II) by hybrid beads was more suitable with the Langmuir isothermal adsorption and showed an ion exchange reaction which occurred in the uneven adsorption surface layer. The maximum adsorption capacity of Pb(II) and Cd(II) was determined to be 278.68 mg/g and 87.91 mg/g, respectively. Furthermore, the adsorption removal process of Pb(II) and Cd(II) using hybrid beads is a spontaneous exothermic reaction and the affinity of the adsorbed material for the adsorbent is excellent. Hybrid beads are inexpensive, have a high removal efficiency of heavy metals, and are environmentally friendly.


2014 ◽  
Vol 881-883 ◽  
pp. 519-524 ◽  
Author(s):  
Lei Lei Cheng ◽  
Xiao Dong Wei ◽  
Xiao Lei Hao ◽  
Di Ruan ◽  
Shao Ming Yu

In this research, chrysotile nanotubes (ChNTs) were synthesized by the hydrothermal method. Synthetic ChNTs were characterized using XRD, SEM, TEM and N2adsorption-desorption. Adsorption technique was applied for removal of Sr (II) and Nd (III) from aqueous solution by using ChNTs. The process had been investigated as a function of pH and temperature. The experimental data were analyzed using equilibrium isotherm models. The adsorption isotherms are fitted well by Langmuir model, having a maximum adsorption capacities of 102.56 mg·g-1for Sr (II) and 47.44 mg·g-1for Nd (III) at 298 ± 1 K. FTIR and XPS techniques were employed to investigate possible adsorption mechanism.


2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Isabela Monici Raimondi ◽  
Valéria Guimarães Rodrigues ◽  
Jacqueline Zanin Lima ◽  
Jéssica Pelinsom Marques ◽  
Luiz Augusto Artimonti Vaz ◽  
...  

Peat is an organic material that has been widely used as an efficient and low-cost adsorbent. As many studies tend to focus on temperate peats, there is a lack of knowledge about the adsorption mechanism of tropical peats. This paper investigates the use of two Brazilian peats (Cravinhos - C and Luis Antônio - LA) from the Mogi-Guaçu river basin for the adsorption of lead (Pb), zinc (Zn), and cadmium (Cd), in order to contribute to the use of local and easy access materials to remediate contaminated sites. The peats adsorbed a high percentage of cations, especially Pb cations (100.0-46.3%), with commercial peat C showing higher adsorption than peat LA. The removal order was Pb2+ > Cd2+ ≥ Zn2+ for C and Pb2+ > Zn2+ > Cd2+ for LA. The batch data for both peats and for all metals were better fit by the Langmuir isotherm, with adsorption capacities (qm) for Pb, Zn, and Cd of 37.3134, 29.0674 and 21.2890 mmol kg-1 in peat C and 21.7391, 14.2550 and 3.6460 mmol kg-1 in LA, respectively, values comparable to those of other peats and biosorbents. The studied peats are considered efficient, alternative and low-cost adsorptive materials for these metals. The proximity of peatlands to areas with high potential for contamination necessitates the use of local materials to reduce remediation costs.             


2016 ◽  
Vol 721 ◽  
pp. 117-122 ◽  
Author(s):  
Samia Benhammadi ◽  
Andrei Shishkin ◽  
Abdelkader Iddou ◽  
Hakim Aguedal ◽  
Louis Charles de Menorval

The removal of lead from aqueous solutions was studied using the liquid-solid extraction method. The solids used are the crude phosphocalcic hydroxapatite [Ca10(PO4)6(OH)2] (HAPc), and phosphocalcic hydroxapatite treated with 5 % lactic acid solution (HAPal). The extraction results showed the influence of the initial concentration of Pb (II) and temperature of the suspensions. The maximum adsorption capacities of each material (HAPc and HAPal) were obtained with the application of Langmuir adsorption model. The most important quantity was founded as 41,84mg/g for HAPal. Isotherms established at different temperatures showed that this parameter affects greatly the adsorption of Pb (II) on both adsorbents. The best results were obtained at room temperature (25°C) compared with those recorded at 50°C.Finally, the results of this study allow us to note that the hydroxiapatite material can be as good extractant solid, for heavy metals, especially when it is modified with lactic acid.


Sign in / Sign up

Export Citation Format

Share Document