scholarly journals GOAT: the master switch for the ghrelin system?

2010 ◽  
Vol 163 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Amparo Romero ◽  
Henriette Kirchner ◽  
Kristy Heppner ◽  
Paul T Pfluger ◽  
Matthias H Tschöp ◽  
...  

AbstractThe ghrelin–ghrelin receptor system is one of the most important mechanisms regulating energy balance and metabolism. Among other actions, central and peripheral administration of ghrelin increases food intake and adiposity. During the last years, many efforts have been made in the investigation of the cellular and molecular mechanisms modulating the effects of ghrelin. One particularity of this peptide hormone is its acylation at serine-3 with an eight-carbon fatty acid (octanoate), which confers its biological activity. Recent reports have demonstrated that the ghrelin O-acyltransferase (GOAT) is the enzyme that catalyzes ghrelin octanoylation. Therefore, all questions concerning the posttranslational acylation of ghrelin are of great interest for the complete understanding of this system. In this review, we summarize the discovery and characterization of GOAT, and remark the importance of GOAT as a novel and potential target that regulates the biological actions of ghrelin, revealing several therapeutical possibilities for the treatment of the metabolic syndrome.

Many attempts have been made in the past to bring order to the near-bewildering array of eutectic morphologies. These have met with limited success due mainly to the fact that the morphology of a particular eutectic may be highly dependent on both chemical composition and the rate of freezing. This paper shows for binary alloys, at least, that a more complete understanding of eutectic growth may be obtained by applying a few simple ‘rules’. With these it is possible to so characterize eutectic growth that the unknown structure of a particular eutectic may be prodicted at a given growth rate if the entropy of solution and re­lative volume of each phase are known. The characterization scheme embraces the growth behaviour of the thirty or so systems for which thermodynamic data are more readily available.


1992 ◽  
Vol 2 (12) ◽  
pp. S214
Author(s):  
A Ray ◽  
P B Sehgal

Recent years have seen the discovery and molecular characterization of a bewildering array of cytokines and hematopoietic growth factors--and an even more complex description of their overlapping functions. The molecular cloning of a wide array of the cell-surface receptors for these cytokines has led to the recognition of classes of structurally related receptor superfamilies. The functional receptors for many of these cytokines (e.g., interleukin (IL)-2R and IL-6R) involve two distinct subunits; strikingly, the same beta subunit can interact with distinct alpha subunits to constitute the receptor for different cytokines (e.g., those for IL-3, IL-5, and granulocyte monocyte colony-stimulating factor). Considerable progress has also been made in defining the molecular mechanisms that underlie clinically relevant cytokine-related phenomena. As an example, the molecular mechanism by which glucocorticoids inhibit IL-6 gene expression has been shown to include the occlusion of the inducible enhancer and the basal promoter elements in the IL-6 promoter. Acute rejection episodes in renal transplant patients are accompanied by increases in serum IL-6 levels; the administration of glucocorticoids during these episodes leads to a rapid and marked decrease in IL-6 levels. It appears that the serum IL-6 level may be a useful diagnostic and prognostic indicator in the transplant patient.


2020 ◽  
Vol 27 (7) ◽  
pp. 1041-1051 ◽  
Author(s):  
Michael Spartalis ◽  
Eleftherios Spartalis ◽  
Antonios Athanasiou ◽  
Stavroula A. Paschou ◽  
Christos Kontogiannis ◽  
...  

Atherosclerotic disease is still one of the leading causes of mortality. Atherosclerosis is a complex progressive and systematic artery disease that involves the intima of the large and middle artery vessels. The inflammation has a key role in the pathophysiological process of the disease and the infiltration of the intima from monocytes, macrophages and T-lymphocytes combined with endothelial dysfunction and accumulated oxidized low-density lipoprotein (LDL) are the main findings of atherogenesis. The development of atherosclerosis involves multiple genetic and environmental factors. Although a large number of genes, genetic polymorphisms, and susceptible loci have been identified in chromosomal regions associated with atherosclerosis, it is the epigenetic process that regulates the chromosomal organization and genetic expression that plays a critical role in the pathogenesis of atherosclerosis. Despite the positive progress made in understanding the pathogenesis of atherosclerosis, the knowledge about the disease remains scarce.


2020 ◽  
Vol 17 ◽  
Author(s):  
Biswajit Panda ◽  
Amal Kumar Gooyee

: Oceans can play a major role in supplying life-saving medicines in the world in future. Although considerable progress has been made in finding new medicines from marine sources, large efforts are still necessary to examine such molecules for clinical applications. Xyloketals are an important group of natural products with various powerful and prominent bioactivities such as inhibition of acetylcholine esterase, antioxidant activity, inhibition of L-calcium channels, radicalscavenging behavior, suppression of cell proliferation, reduction of neonatal hypoxic-ischemic brain injury, etc. This review describes the isolation and structural characterization of all xyloketal natural products giving major emphasis on their bioactivity.


Author(s):  
Bibian Bibeca Bumbila García ◽  
Hernán Andrés Cedeño Cedeño ◽  
Tatiana Moreira Chica ◽  
Yaritza Rossana Parrales Ríos

The objective of the work is to establish the characterization of the auditory disability and its relationship with resilience at the Technical University of Manabí. The article shows a conceptual analysis related to the inclusion and social integration of disabled students. Based on the fact that the person with disabilities grows and develops in the same way as that of people without disabilities and what usually happens is that disabled people are rejected and discriminated against based on a prefabricated and erroneous conceptualization of these people. The results associated with the application of the SV-RES test prepared by the researchers are shown (Saavedra & Villalta, 2008b). Characterization of the auditory deficit is made in the students, and the limitations that derive from it are pointed out. We analyze the particularities related to communication with students who have a hearing disability and resilience in this type of student, where some personal highlights that in this sense constitute an example of resilience. Finally, the results related to the study of the relationship between students' hearing disability and the level of resilience dimensions are shown.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qian-Hao Zhu ◽  
Warwick Stiller ◽  
Philippe Moncuquet ◽  
Stuart Gordon ◽  
Yuman Yuan ◽  
...  

Abstract Fiber mutants are unique and valuable resources for understanding the genetic and molecular mechanisms controlling initiation and development of cotton fibers that are extremely elongated single epidermal cells protruding from the seed coat of cottonseeds. In this study, we reported a new fuzzless-tufted cotton mutant (Gossypium hirsutum) and showed that fuzzless-tufted near-isogenic lines (NILs) had similar agronomic traits and a higher ginning efficiency compared to their recurrent parents with normal fuzzy seeds. Genetic analysis revealed that the mutant phenotype is determined by a single incomplete dominant locus, designated N5. The mutation was fine mapped to an approximately 250-kb interval containing 33 annotated genes using a combination of bulked segregant sequencing, SNP chip genotyping, and fine mapping. Comparative transcriptomic analysis using 0–6 days post-anthesis (dpa) ovules from NILs segregating for the phenotypes of fuzzless-tufted (mutant) and normal fuzzy cottonseeds (wild-type) uncovered candidate genes responsible for the mutant phenotype. It also revealed that the flanking region of the N5 locus is enriched with differentially expressed genes (DEGs) between the mutant and wild-type. Several of those DEGs are members of the gene families with demonstrated roles in cell initiation and elongation, such as calcium-dependent protein kinase and expansin. The transcriptome landscape of the mutant was significantly reprogrammed in the 6 dpa ovules and, to a less extent, in the 0 dpa ovules, but not in the 2 and 4 dpa ovules. At both 0 and 6 dpa, the reprogrammed mutant transcriptome was mainly associated with cell wall modifications and transmembrane transportation, while transcription factor activity was significantly altered in the 6 dpa mutant ovules. These results imply a similar molecular basis for initiation of lint and fuzz fibers despite certain differences.


2021 ◽  
Vol 22 (14) ◽  
pp. 7390
Author(s):  
Nicole Wesch ◽  
Frank Löhr ◽  
Natalia Rogova ◽  
Volker Dötsch ◽  
Vladimir V. Rogov

Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study we focused on the biophysical and biochemical characterization of the interaction between UBA5 and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy. This structure in combination with additional NMR titration and isothermal titration calorimetry experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal unstructured region in UBA5 for the ufmylation cascade.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Betty Ha ◽  
Kevin P. Larsen ◽  
Jingji Zhang ◽  
Ziao Fu ◽  
Elizabeth Montabana ◽  
...  

AbstractReverse transcription of the HIV-1 viral RNA genome (vRNA) is an integral step in virus replication. Upon viral entry, HIV-1 reverse transcriptase (RT) initiates from a host tRNALys3 primer bound to the vRNA genome and is the target of key antivirals, such as non-nucleoside reverse transcriptase inhibitors (NNRTIs). Initiation proceeds slowly with discrete pausing events along the vRNA template. Despite prior medium-resolution structural characterization of reverse transcriptase initiation complexes (RTICs), higher-resolution structures of the RTIC are needed to understand the molecular mechanisms that underlie initiation. Here we report cryo-EM structures of the core RTIC, RTIC–nevirapine, and RTIC–efavirenz complexes at 2.8, 3.1, and 2.9 Å, respectively. In combination with biochemical studies, these data suggest a basis for rapid dissociation kinetics of RT from the vRNA–tRNALys3 initiation complex and reveal a specific structural mechanism of nucleic acid conformational stabilization during initiation. Finally, our results show that NNRTIs inhibit the RTIC and exacerbate discrete pausing during early reverse transcription.


Sign in / Sign up

Export Citation Format

Share Document