scholarly journals Novel cancer therapies and their association with diabetes

2019 ◽  
Vol 62 (2) ◽  
pp. R187-R199 ◽  
Author(s):  
Afreen Idris Shariff ◽  
Sohail Syed ◽  
Rebecca A Shelby ◽  
Jeremy Force ◽  
Jeffrey Melson Clarke ◽  
...  

Over the last decade, there has been a shift in the focus of cancer therapy from conventional cytotoxic drugs to therapies more specifically directed to cancer cells. These novel therapies include immunotherapy, targeted therapy and precision medicine, each developed in great part with a goal of limiting collateral destruction of normal tissues, while enhancing tumor destruction. Although this approach is sound in theory, even new, specific therapies have some undesirable, ‘off target effects’, in great part due to molecular pathways shared by neoplastic and normal cells. One such undesirable effect is hyperglycemia, which results from either the loss of immune tolerance and autoimmune destruction of pancreatic β-cells or dysregulation of the insulin signaling pathway resulting in insulin resistance. These distinct pathogenic mechanisms lead to clinical presentations similar to type 1 (T1DM) and type 2 (T2DM) diabetes mellitus. Both types of diabetes have been reported in patients across clinical trials, and data on the mechanism(s) for developing hyperglycemia, prevalence, prognosis and effect on cancer mortality is still emerging. With the rapidly expanding list of clinical indications for new cancer therapies, it is essential to understand the impact of their adverse effects. In this review, we focus on hyperglycemia and diabetes related to cancer therapies, describe what is known about mechanism(s) leading to dysregulated glucose metabolism and provide a guide to management of complex oncology patients with a new diagnosis of diabetes.

Author(s):  
Larisa Dmitrievna Popovich ◽  
Svetlana Valentinovna Svetlichnaya ◽  
Aleksandr Alekseevich Moiseev

Diabetes – a disease in which the effect of the treatment substantially depends on the patient. Known a study showed that the use of glucometers with the technology of three-color display of test results facilitates self-monitoring of blood sugar and leads to a decrease in glycated hemoglobin (HbAlc). Purpose of the study: to modeling the impact of using of a glucometer with a color-coded display on the clinical outcomes of diabetes mellitus and calculating, the potential economic benefits of reducing the hospitalization rate of patients with diabetes. Material and methods. Based on data from two studies (O. Schnell et al. and M. Baxter et al.) simulation of the reduction in the number of complications with the use of a glucometer with a color indication. In a study by O. Schnell et al. a decrease of HbA1c by 0.69 percent is shown when using the considered type of glucometers, which was the basis of the model. Results. In the model, the use of a glucometer with a color-coded display for type 1 diabetes led to a decrease in the total number of complications by 9.2 thousand over 5 years per a cohort of 40 thousand patients with different initial levels of HbA1c. In a cohort of 40 thousand patients with type 2 diabetes, the simulated number of prevented complications was 1.7 thousand over 5 years. When extrapolating these data to all patients with diabetes included in the federal register of diabetes mellitus (FRD), the number of prevented complications was 55.4 thousand cases for type 1 diabetes and 67.1 thousand cases for type 2 diabetes. The possible economic effect from the use of the device by all patients with a diagnosis of diabetes, which are included in the FRD, estimated at 1.5 billion rubles for a cohort of patients with type 1 diabetes and 5.3 billion rubles for patients with type 2 diabetes. Conclusion. Improving the effectiveness of self-monitoring, which is the result of the use of glucometers with color indicators, can potentially significantly reduce the incidence of complications in diabetes and thereby provide significant economic benefits to society.


2019 ◽  
Vol 15 (3) ◽  
pp. 172-173 ◽  
Author(s):  
Valdemar Grill ◽  
Bjørn O. Åsvold

Latent Autoimmune Diabetes in the Adult, LADA has been investigated less than “classical” type 1 and type 2 diabetes and the criteria for and the relevance of a LADA diagnosis has been challenged. Despite the absence of a genetic background that is exclusive to LADA, this form of diabetes displays phenotypic characteristics that distinguish it from other forms of diabetes. LADA is heterogeneous in terms of the impact of autoimmunity and lifestyle factors, something that poses problems as to therapy and follow-up perhaps particularly in those with marginal positivity. Yet, there appears to be clear clinical utility in classifying individuals as LADA.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stefana Catalina Bilha ◽  
Letitia Leustean ◽  
Cristina Preda ◽  
Dumitru D. Branisteanu ◽  
Laura Mihalache ◽  
...  

Abstract Background Despite the increased fracture risk, bone mineral density (BMD) is variable in type 1 (T1D) and type 2 (T2D) diabetes mellitus. We aimed at comparing independent BMD predictors in T1D, T2D and control subjects, respectively. Methods Cross-sectional case-control study enrolling 30 T1D, 39 T2D and 69 age, sex and body mass index (BMI) – matched controls that underwent clinical examination, dual-energy X-ray absorptiometry (BMD at the lumbar spine and femoral neck) and serum determination of HbA1c and parameters of calcium and phosphate metabolism. Results T2D patients had similar BMD compared to T1D individuals (after adjusting for age, BMI and disease duration) and to matched controls, respectively. In multiple regression analysis, diabetes duration – but not HbA1c- negatively predicted femoral neck BMD in T1D (β= -0.39, p = 0.014), while BMI was a positive predictor for lumbar spine (β = 0.46, p = 0.006) and femoral neck BMD (β = 0.44, p = 0.007) in T2D, besides gender influence. Age negatively predicted BMD in controls, but not in patients with diabetes. Conclusions Long-standing diabetes and female gender particularly increase the risk for low bone mass in T1D. An increased body weight partially hinders BMD loss in T2D. The impact of age appears to be surpassed by that of other bone regulating factors in both T1D and T2D patients.


2016 ◽  
Vol 5 (2) ◽  
pp. 136
Author(s):  
Eduart Wolok

This study aims to determine the economic impact of Whale Sharks travel to revenue of Batubarani villagers in Gorontalo . This study was conducted in January-May 2016. Datacollection was done by direct observation using questionnaires . The economic impact wasanalyzed by using Keynesian Income Multiplier . The results showed that the impact of whalesharks travel to people's income Batubarani at the high category . Income Keynesian Multipliervalue is 1:52 , Type 1 Income Multiplier Ratio is 1.61 and Type 2 Income Multiplier Ratio is1.97. 


2016 ◽  
Vol 7 (2) ◽  
Author(s):  
Paul C Langley ◽  
Taeho Greg Rhee

Over the past 20 years a number of simulations or models have been developed as a basis for tracking and evaluating the impact of pharmacological and other interventions in type 1 and type 2 diabetes mellitus. These models have typically tracked the natural course of these diseases generating long-term composite claims for cost-effectiveness. These claims can extend over the lifetime of the modeled patient cohort. Set against the standards of normal science, however, these claims lack credibility. The claims presented are all too often either immune to failure or are presented in a form that is non-testable. As such they fail to meet the key experimental requirements of falsification and replication. Unfortunately, there is a continuing belief that long-term or lifetime models are essential to decision-making. This is misplaced. The purpose of this review is to argue that there is a pressing need to reconsider the needs of health system decision makers and focus on modeled or simulated claims that are meaningful, testable, reportable and replicable in evaluating interventions in diabetes mellitus.   Type: Commentary


2015 ◽  
Vol 7 (S1) ◽  
Author(s):  
Rodrigo Bastos Fóscolo ◽  
Ann Kristine Jansen ◽  
Carolina Jovita Oliveira Dias

Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 328 ◽  
Author(s):  
Dong Nam ◽  
Man-Il Kim ◽  
Dong Kang ◽  
Byung Kim

Recently, human and property damages have often occurred due to various reasons—such as landslides, debris flow, and other sediment-related disasters—which are also caused by regional torrential rain resulting from climate change and reckless development of mountainous areas. Debris flows mainly occur in mountainous areas near urban living communities and often cause direct damages. In general, debris flows containing soil, rock fragments, and driftwood temporarily travel down to lower parts along with a mountain torrent. However, debris flows are also often reported to stream down from the point where a slope failure or a landslide occurs in a mountain directly to its lower parts. The impact of those debris flows is one of the main factors that cause serious damage to structures. To mitigate such damage of debris flows, a quantitative assessment of the impact force is thus required. Moreover, technologies to evaluate disaster prevention facilities and structures at disaster-prone regions are needed. This study developed two models to quantitatively analyze the damages caused by debris flows on structures: Type-1 model for calculating the impact force, which reflected the flow characteristics of debris flows and the Type-2 model, which calculated the impact force based on the topographical characteristics of mountainous regions. Using RAMMS a debris flow runoff model, the impact forces assessed through Type-1 and Type-2 models were compared to check reliability. Using the assessed impact forces, the damage ratio of the structures was calculated and the amount of damage caused by debris flows on the structures was ultimately assessed. The results showed that the Type-1 model overestimated the impact force by 10% and the Type-2 model by 4% for Mt. Umyeon in Seoul, compared to the RAMMS model. In addition, the Type-1 model overestimated the impact force by 3% and Type-2 by 2% for Mt. Majeok in Chuncheon, South Korea.


2014 ◽  
Vol 222 (3) ◽  
pp. G13-G25 ◽  
Author(s):  
James E Bowe ◽  
Zara J Franklin ◽  
Astrid C Hauge-Evans ◽  
Aileen J King ◽  
Shanta J Persaud ◽  
...  

The pathophysiology of diabetes as a disease is characterised by an inability to maintain normal glucose homeostasis. In type 1 diabetes, this is due to autoimmune destruction of the pancreatic β-cells and subsequent lack of insulin production, and in type 2 diabetes it is due to a combination of both insulin resistance and an inability of the β-cells to compensate adequately with increased insulin release. Animal models, in particular genetically modified mice, are increasingly being used to elucidate the mechanisms underlying both type 1 and type 2 diabetes, and as such the ability to study glucose homeostasisin vivohas become an essential tool. Several techniques exist for measuring different aspects of glucose tolerance and each of these methods has distinct advantages and disadvantages. Thus the appropriate methodology may vary from study to study depending on the desired end-points, the animal model, and other practical considerations. This review outlines the most commonly used techniques for assessing glucose tolerance in rodents and details the factors that should be taken into account in their use. Representative scenarios illustrating some of the practical considerations of designingin vivoexperiments for the measurement of glucose homeostasis are also discussed.


Sign in / Sign up

Export Citation Format

Share Document