scholarly journals Spermatozoal transcriptome profiling for bull sperm motility: a potential tool to evaluate semen quality

Reproduction ◽  
2009 ◽  
Vol 138 (1) ◽  
pp. 65-80 ◽  
Author(s):  
Nathalie Bissonnette ◽  
Jean-Philippe Lévesque-Sergerie ◽  
Catherine Thibault ◽  
Guylain Boissonneault

Regarding bull fertility, establishing an association between in vitro findings and field fertility requires a multi-parametric approach that measures the integrity of various structures and dynamic functions, such as motion characteristics, among others. The heterogeneous RNA pattern of spermatozoa could be used in genomic analysis for evaluating both spermatogenesis and fertility potential of semen, mainly because of the static status of the transcriptome of this particular differentiated cell. In a previous study, we determined that some spermatozoal transcripts identified by PCR-based cDNA subtraction are associated with non-return rate, a field fertility index. In the present study, the microarray technology was used in conjunction with differential RNA transcript extraction. We have shown that among these genes, some transcripts are also associated with the motility status of a population of sperm cells fractionated from the same ejaculate. We highlighted a systematic data analysis and validation scheme important for the identification of significant transcripts in this context. With such an approach, we found that transcripts encoding a serine/threonine testis-specific protein kinase (TSSK6) and a metalloproteinase non coding RNA (ADAM5P) are associated with high-motility status (P<0.001), also confirmed by quantitative PCR (P=0.0075). This association was found only when transcripts were extracted using the hot-TRIzol protocol, whereas the cold-TRIzol RNA extract comprised mitochondrial transcripts. These results demonstrate that some transcripts previously identified in association with field fertility are also found associated with in vitro motility provided that a stringent RNA extraction protocol is used.

Author(s):  
U. Aebi ◽  
L.E. Buhle ◽  
W.E. Fowler

Many important supramolecular structures such as filaments, microtubules, virus capsids and certain membrane proteins and bacterial cell walls exist as ordered polymers or two-dimensional crystalline arrays in vivo. In several instances it has been possible to induce soluble proteins to form ordered polymers or two-dimensional crystalline arrays in vitro. In both cases a combination of electron microscopy of negatively stained specimens with analog or digital image processing techniques has proven extremely useful for elucidating the molecular and supramolecular organization of the constituent proteins. However from the reconstructed stain exclusion patterns it is often difficult to identify distinct stain excluding regions with specific protein subunits. To this end it has been demonstrated that in some cases this ambiguity can be resolved by a combination of stoichiometric labeling of the ordered structures with subunit-specific antibody fragments (e.g. Fab) and image processing of the electron micrographs recorded from labeled and unlabeled structures.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S223-S246 ◽  
Author(s):  
C. R. Wira ◽  
H. Rochefort ◽  
E. E. Baulieu

ABSTRACT The definition of a RECEPTOR* in terms of a receptive site, an executive site and a coupling mechanism, is followed by a general consideration of four binding criteria, which include hormone specificity, tissue specificity, high affinity and saturation, essential for distinguishing between specific and nonspecific binding. Experimental approaches are proposed for choosing an experimental system (either organized or soluble) and detecting the presence of protein binding sites. Techniques are then presented for evaluating the specific protein binding sites (receptors) in terms of the four criteria. This is followed by a brief consideration of how receptors may be located in cells and characterized when extracted. Finally various examples of oestrogen, androgen, progestagen, glucocorticoid and mineralocorticoid binding to their respective target tissues are presented, to illustrate how researchers have identified specific corticoid and mineralocorticoid binding in their respective target tissue receptors.


1986 ◽  
Vol 261 (31) ◽  
pp. 14797-14803 ◽  
Author(s):  
T Akiyama ◽  
T Kadowaki ◽  
E Nishida ◽  
T Kadooka ◽  
H Ogawara ◽  
...  

2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii63-ii63
Author(s):  
Lakshmi Bollu ◽  
Derek Wainwright ◽  
Lijie Zhai ◽  
Erik Ladomersky ◽  
Kristen Lauing ◽  
...  

Abstract INTRODUCTION Indoleamine 2,3-dioxygenase 1 (IDO; IDO1) is a rate-limiting enzyme that metabolizes the essential amino acid tryptophan into kynurenine. Recent work by our group has revealed that IDO promotes tumor development and suppresses immune cell functions independent of its enzyme activity. Moreover, pharmacologic IDO enzyme inhibitors that currently serve as the only class of drugs available for targeting immunosuppressive IDO activity, fail to improve the survival of patients with GBM. Here, we developed IDO-Proteolysis Targeting Chimeras (IDO-PROTACs). PROTACs bind to a specific protein and recruit an E3 ubiquitin ligase that enhance proteasome-mediated degradation of the target protein. METHODS A library of ≥100 IDO-PROTACs were developed by joining BMS986205 (IDO binder) with a linker group to various E3-ligase ligands. Western blot analysis of PROTAC-induced IDO degradation was tested in vitro among multiple human and mouse GBM cell lines including U87, GBM6, GBM43 and GL261 along a time course ranging between 1–96 hours of treatment and at varying concentrations. The mechanism of IDO protein degradation was investigated using pharmacologic ligands that inhibit or compete with the proteasome-mediated protein degradation pathway. RESULTS Primary screening identified several IDO-PROTACs with IDO protein degradation potential. Secondary screening showed that our lead compound has a DC50 value of ~0.5µM with an ability to degrade IDO in all GBM cells analyzed, and an initial activity within 12 hours of treatment that extended for up to 96 hours. Mutating the CRBN-binding ligand, pretreatment with the ubiquitin proteasome system inhibitors MG132 or MLN4924 or using unmodified parental compound all inhibited IDO protein degradation. CONCLUSIONS This study developed an initial IDO-PROTAC technology that upon further optimization, can neutralize both IDO enzyme and non-enzyme immunosuppressive effects. When combined with other forms of immunotherapy, IDO-PROTACs have the potential to substantially enhance immunotherapeutic efficacy in patients with GBM.


2021 ◽  
Vol 22 (6) ◽  
pp. 2971
Author(s):  
Shizuka Takaku ◽  
Masami Tsukamoto ◽  
Naoko Niimi ◽  
Hideji Yako ◽  
Kazunori Sango

Besides its insulinotropic actions on pancreatic β cells, neuroprotective activities of glucagon-like peptide-1 (GLP-1) have attracted attention. The efficacy of a GLP-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) for functional repair after sciatic nerve injury and amelioration of diabetic peripheral neuropathy (DPN) has been reported; however, the underlying mechanisms remain unclear. In this study, the bioactivities of Ex-4 on immortalized adult rat Schwann cells IFRS1 and adult rat dorsal root ganglion (DRG) neuron–IFRS1 co-culture system were investigated. Localization of GLP-1R in both DRG neurons and IFRS1 cells were confirmed using knockout-validated monoclonal Mab7F38 antibody. Treatment with 100 nM Ex-4 significantly enhanced survival/proliferation and migration of IFRS1 cells, as well as stimulated the movement of IFRS1 cells toward neurites emerging from DRG neuron cell bodies in the co-culture with the upregulation of myelin protein 22 and myelin protein zero. Because Ex-4 induced phosphorylation of serine/threonine-specific protein kinase AKT in these cells and its effects on DRG neurons and IFRS1 cells were attenuated by phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor LY294002, Ex-4 might act on both cells to activate PI3K/AKT signaling pathway, thereby promoting myelination in the co-culture. These findings imply the potential efficacy of Ex-4 toward DPN and other peripheral nerve lesions.


Pathobiology ◽  
2021 ◽  
pp. 1-12
Author(s):  
Ling Zhou ◽  
Xiao-li Xu

<b><i>Background:</i></b> Emerging research has demonstrated that long non-coding RNAs (lncRNAs) attach great importance to the progression of cervical cancer (CC). LncRNA ARAP1-AS1 was involved in the development of several cancers; however, its role in CC is far from being elucidated. <b><i>Methods:</i></b> Real-time PCR (RT-PCR) was employed to detect ARAP1-AS1 and miR-149-3p expression in CC samples. CC cell lines (HeLa and C33A cells) were regarded as the cell models. The biological effect of ARAP1-AS1 on cancer cells was measured using CCK-8 assay, colony formation assay, flow cytometry, Transwell assay and wound healing assay in vitro, and subcutaneous xenotransplanted tumor model and tail vein injection model in vivo. Furthermore, interactions between ARAP1-AS1 and miR-149-3p, miR-149-3p and POU class 2 homeobox 2 (POU2F2) were determined by bioinformatics analysis, qRT-PCR, Western blot, luciferase reporter and RNA immunoprecipitation assay, respectively. <b><i>Results:</i></b> The expression of ARAP1-AS1 was enhanced in CC samples, while miR-149-3p was markedly suppressed. Additionally, ARAP1-AS1 overexpression enhanced the viability, migration, and invasion of CC cells. ARAP1-AS1 downregulated miR-149-3p via sponging it. ARAP1-AS1 and miR-149-3p exhibited a negative correlation in CC samples. On the other hand, ARAP1-AS1 enhanced the expression of POU2F2, which was validated as a target gene of miR-149-3p. <b><i>Conclusion:</i></b> ARAP1-AS1 was abnormally upregulated in CC tissues and indirectly modulated the POU2F2 expression via reducing miR-149-3p expression. Our study identified a novel axis, ARAP1-AS1/miR-149-3p/POU2F2, in CC tumorigenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Malabika Chakrabarti ◽  
Nishant Joshi ◽  
Geeta Kumari ◽  
Preeti Singh ◽  
Rumaisha Shoaib ◽  
...  

AbstractCytoskeletal structures of Apicomplexan parasites are important for parasite replication, motility, invasion to the host cell and survival. Apicortin, an Apicomplexan specific protein appears to be a crucial factor in maintaining stability of the parasite cytoskeletal assemblies. However, the function of apicortin, in terms of interaction with microtubules still remains elusive. Herein, we have attempted to elucidate the function of Plasmodium falciparum apicortin by monitoring its interaction with two main components of parasite microtubular structure, α-tubulin-I and β-tubulin through in silico and in vitro studies. Further, a p25 domain binding generic drug Tamoxifen (TMX), was used to disrupt PfApicortin-tubulin interactions which led to the inhibition in growth and progression of blood stage life cycle of P. falciparum.


Author(s):  
Fatemeh Hejazi ◽  
Vahid Ebrahimi ◽  
Mehrdad Asgary ◽  
Abbas Piryaei ◽  
Mohammad Javad Fridoni ◽  
...  

AbstractOsteoporosis is a common bone disease that results in elevated risk of fracture, and delayed bone healing and impaired bone regeneration are implicated by this disease. In this study, Elastin/Polycaprolactone/nHA nanofibrous scaffold in combination with mesenchymal stem cells were used to regenerate bone defects. Cytotoxicity, cytocompatibility and cellular morphology were evaluated in vitro and observations revealed that an appropriate environment for cellular attachment, growth, migration, and proliferation is provided by this scaffold. At 3 months following ovariectomy (OVX), the rats were used as animal models with an induced critical size defect in the femur to evaluate the therapeutic potential of osteogenic differentiation of bone marrow mesenchymal stem cells (BM-MSCs) seeded on 3 dimension (3D) scaffolds. In this experimental study, 24 female Wistar rats were equally divided into three groups: Control, scaffold (non-seeded BM-MSC), and scaffold + cell (seeded BM-MSC) groups. 30 days after surgery, the right femur was removed, and underwent a stereological analysis and RNA extraction in order to examine the expression of Bmp-2 and Vegf genes. The results showed a significant increase in stereological parameters and expression of Bmp-2 and Vegf in scaffold and scaffold + cell groups compared to the control rats. The present study suggests that the use of the 3D Elastin/Polycaprolactone (PCL)/Nano hydroxyapatite (nHA) scaffold in combination with MSCs may improve the fracture regeneration and accelerates bone healing at the osteotomy site in rats.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Graziana Esposito ◽  
Bijorn Omar Balzamino ◽  
Egidio Stigliano ◽  
Filippo Biamonte ◽  
Andrea Urbani ◽  
...  

AbstractWe previously described the profibrogenic effect of NGF on conjunctival Fibroblasts (FBs) and its ability to trigger apoptosis in TGFβ1-induced myofibroblasts (myoFBs). Herein, cell apoptosis/signalling, cytokines’ signature in conditioned media and inflammatory as well as angiogenic pathway were investigated. Experimental myoFBs were exposed to NGF (0.1–100 ng/mL), at defined time-point for confocal and biomolecular analysis. Cells were analysed for apoptotic and cell signalling activation in cell extracts and for some inflammatory and proinflammatory/angiogenic factors’ activations. NGF triggered cJun overexpression and phospho-p65-NFkB nuclear translocation. A decreased Bcl2:Bax ratio and a significant expression of smad7 were confirmed in early AnnexinV-positive myoFBs. A specific protein signature characterised the conditioned media: a dose dependent decrease occurred for IL8, IL6 while a selective increase was observed for VEGF and cyr61 (protein/mRNA). TIMP1 levels were unaffected. Herein, NGF modulation of smad7, the specific IL8 and IL6 as well as VEGF and cyr61 modulation deserve more attention as opening to alternative approaches to counteract fibrosis.


2021 ◽  
Vol 22 (5) ◽  
pp. 2683
Author(s):  
Princess D. Rodriguez ◽  
Hana Paculova ◽  
Sophie Kogut ◽  
Jessica Heath ◽  
Hilde Schjerven ◽  
...  

Non-coding RNAs (ncRNAs) comprise a diverse class of non-protein coding transcripts that regulate critical cellular processes associated with cancer. Advances in RNA-sequencing (RNA-Seq) have led to the characterization of non-coding RNA expression across different types of human cancers. Through comprehensive RNA-Seq profiling, a growing number of studies demonstrate that ncRNAs, including long non-coding RNA (lncRNAs) and microRNAs (miRNA), play central roles in progenitor B-cell acute lymphoblastic leukemia (B-ALL) pathogenesis. Furthermore, due to their central roles in cellular homeostasis and their potential as biomarkers, the study of ncRNAs continues to provide new insight into the molecular mechanisms of B-ALL. This article reviews the ncRNA signatures reported for all B-ALL subtypes, focusing on technological developments in transcriptome profiling and recently discovered examples of ncRNAs with biologic and therapeutic relevance in B-ALL.


Sign in / Sign up

Export Citation Format

Share Document