scholarly journals Oxidative stress impairs function and increases redox protein modifications in human spermatozoa

Reproduction ◽  
2015 ◽  
Vol 149 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Tania Morielli ◽  
Cristian O'Flaherty

Oxidative stress, generated by excessive reactive oxygen species (ROS) or decreased antioxidant defenses (and possibly both), is associated with male infertility. Oxidative stress results in redox-dependent protein modifications, such as tyrosine nitration andS-glutathionylation. Normozoospermic sperm samples from healthy individuals were included in this study. Samples were incubated with increasing concentrations (0–5 mM) of exogenous hydrogen peroxide, tert-butyl hydroperoxide, or diethylamine NONOate (DA-NONOate, a nitric oxide (NO∙) donor) added to the medium. Spermatozoa treated with or without ROS were incubated under capacitating conditions and then levels of tyrosine phosphorylation and percentage of acrosome reaction (AR) induced by lysophosphatidylcholine were determined. Modified sperm proteins from cytosolic, triton-soluble, and triton-insoluble fractions were analyzed by SDS–PAGE immunoblotting and immunocytochemistry with anti-glutathione and anti-nitrotyrosine antibodies. Levels ofS-glutathionylation increased dose dependently after exposure to hydroperoxides (P<0.05) and were localized mainly to the cytosolic and triton-soluble fractions of the spermatozoa. Levels of tyrosine-nitrated proteins increased dose dependently after exposure to DA-NONOate (P<0.05) and were mainly localized to the triton-insoluble fraction. ROS-treated spermatozoa showed impaired motility without affecting viability (hypo-osmotic swelling test). These treated spermatozoa had tyrosine phosphorylation and AR levels similar to that of non-capacitated spermatozoa following incubation under capacitating conditions, suggesting an impairment of sperm capacitation by oxidative stress. In conclusion, oxidative stress promotes a dose-dependent increase in tyrosine nitration andS-glutathionylation and alters motility and the ability of spermatozoa to undergo capacitation.Free Spanish abstractA Spanish translation of this abstract is freely available athttp://www.reproduction-online.org/content/149/1/113/suppl/DC1.

1989 ◽  
Vol 62 (03) ◽  
pp. 902-905 ◽  
Author(s):  
Brian S Greffe ◽  
Marilyn J Manco-Johnson ◽  
Richard A Marlar

SummaryProtein C (PC) is a vitamin K-dependent protein which functions as both an anticoagulant and profibrinolytic. It is synthesized as a single chain protein (SC-PC) and post-transla-tionally modified into a two chain form (2C-PC). Two chain PC consists of a light chain (LC) and a heavy chain (HC). The present study was undertaken to determine the composition of the molecular forms of PC in plasma. PC was immunoprecipitated, subjected to SDS-PAGE and Western blotting. The blots were scanned by densitometry to determine the distribution of the various forms. The percentage of SC-PC and 2C-PC was found to be 10% and 90% respectively. This is in agreement with previous work. SC-PC and the heavy chain of 2C-PC consisted of three molecular forms (“alpha”, “beta”, and “gamma”). The “alpha” form of HC is the standard 2C form with a MW of 40 Kd. The “beta” form of HC has also been described and has MW which is 4 Kd less than the “alpha” form. The “gamma” species of the SC and 2C-PC has not been previously described. However, its 3 Kd difference from the “beta” form could be due to modification of the “beta” species or to a separate modification of the alpha-HC. The LC of PC was shown to exist in two forms (termed form 1 and form 2). The difference between these two forms is unknown. The molecular forms of PC are most likely due to a post-translational modification (either loss of a carbohydrate or a peptide) rather than from plasma derived degradation.


1998 ◽  
Vol 274 (1) ◽  
pp. C245-C252 ◽  
Author(s):  
Junsuke Igarashi ◽  
Masashi Nishida ◽  
Shiro Hoshida ◽  
Nobushige Yamashita ◽  
Hiroaki Kosaka ◽  
...  

The effects of nitric oxide (NO) produced by cardiac inducible NO synthase (iNOS) on myocardial injury after oxidative stress were examined. Interleukin-1β induced cultured rat neonatal cardiac myocytes to express iNOS. After induction of iNOS,l-arginine enhanced NO production in a concentration-dependent manner. Glutathione peroxidase (GPX) activity in myocytes was attenuated by elevated iNOS activity and by an NO donor, S-nitroso- N-acetyl-penicillamine (SNAP). Although NO production by iNOS did not induce myocardial injury, NO augmented release of lactate dehydrogenase from myocyte cultures after addition of H2O2(0.1 mM, 1 h). Inhibition of iNOS with Nω-nitro-l-arginine methyl ester ameliorated the effects of NO-enhancing treatments on myocardial injury and GPX activity. SNAP augmented the myocardial injury induced by H2O2. Inhibition of GPX activity with antisense oligodeoxyribonucleotide for GPX mRNA increased myocardial injury by H2O2. Results suggest that the induction of cardiac iNOS promotes myocardial injury due to oxidative stress via inactivation of the intrinsic antioxidant enzyme, GPX.


Biology ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 18
Author(s):  
Amelia Charlton ◽  
Jessica Garzarella ◽  
Karin A. M. Jandeleit-Dahm ◽  
Jay C. Jha

Oxidative stress and inflammation are considered major drivers in the pathogenesis of diabetic complications, including renal and cardiovascular disease. A symbiotic relationship also appears to exist between oxidative stress and inflammation. Several emerging therapies target these crucial pathways, to alleviate the burden of the aforementioned diseases. Oxidative stress refers to an imbalance between reactive oxygen species (ROS) and antioxidant defenses, a pathological state which not only leads to direct cellular damage but also an inflammatory cascade that further perpetuates tissue injury. Emerging therapeutic strategies tackle these pathways in a variety of ways, from increasing antioxidant defenses (antioxidants and Nrf2 activators) to reducing ROS production (NADPH oxidase inhibitors and XO inhibitors) or inhibiting the associated inflammatory pathways (NLRP3 inflammasome inhibitors, lipoxins, GLP-1 receptor agonists, and AT-1 receptor antagonists). This review summarizes the mechanisms by which oxidative stress and inflammation contribute to and perpetuate diabetes associated renal and cardiovascular disease along with the therapeutic strategies which target these pathways to provide reno and cardiovascular protection in the setting of diabetes.


2004 ◽  
Vol 287 (6) ◽  
pp. H2448-H2453 ◽  
Author(s):  
Katherine A. Blackwell ◽  
Joseph P. Sorenson ◽  
Darcy M. Richardson ◽  
Leslie A. Smith ◽  
Osamu Suda ◽  
...  

Oxidative stress has been implicated as an important mechanism of vascular endothelial dysfunction induced by aging. Previous studies suggested that tetrahydrobiopterin (BH4), an essential cofactor of endothelial NO synthase, could be a molecular target for oxidation. We tested the hypothesis that oxidative stress, in particular oxidation of BH4, may contribute to attenuation of endothelium-dependent relaxation in aged mice. Vasomotor function of isolated carotid arteries was studied using a video dimension analyzer. Vascular levels of BH4 and its oxidation products were measured via HPLC. In aged mice (age, 95 ± 2 wk), endothelium-dependent relaxation to ACh (10−5 to 10−9 M) as well as endothelium-independent relaxation to the NO donor diethylammonium ( Z)-1-( N, N-diethylamino)diazen-1-ium -1,2-diolate (DEA-NONOate, 10−5 to 10−9 M) were significantly reduced compared with relaxation detected in young mice (age, 23 ± 0.5 wk). Incubation of aged mouse carotid arteries with the cell-permeable SOD mimetic Mn(III)tetra(4-benzoic acid)porphyrin chloride normalized relaxation to ACh and DEA-NONOate. Furthermore, production of superoxide anion in aorta and serum levels of amyloid P component, which is the murine analog of C-reactive protein, was increased in old mice. In aorta, neither the concentration of BH4 nor the ratio of reduced BH4 to the oxidation products were different between young and aged mice. Our results demonstrate that in mice, aging impairs relaxation mediated by NO most likely by increased formation of superoxide anion. Oxidation of BH4 does not appear to be an important mechanism underlying vasomotor dysfunction in aged mouse arteries.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Sumeet S Vaikunth ◽  
Karl T Weber ◽  
Syamal K Bhattacharya

Introduction: Isoproterenol-induced acute stressor state simulates injury from burns or trauma, and results in Ca 2+ overloading and oxidative stress in diverse tissues, including cardiac myocytes and their subsarcolemmal mitochondria (SSM), overwhelming endogenous Zn 2+ -based antioxidant defenses. We hypothesized that pretreatment with nebivolol (Nebi), having dual beta-1 antagonistic and novel beta-3 receptor agonistic properties, would prevent Ca 2+ overloading and oxidative stress and upregulate Zn 2+ -based antioxidant defenses, thus enhancing its overall cardioprotective potential in acute stressor state. Methods: Eight-week-old male Sprague-Dawley rats received a single subcutaneous dose of isoproterenol (1 mg/kg) and compared to those treated with Nebi (10 mg/kg by gavage) for 10 days prior to isoproterenol. SSM were harvested from cardiac tissue at sacrifice. Total Ca 2+ , Zn 2+ and 8-isoprostane levels in tissue, and mitochondrial permeability transition pore (mPTP) opening, free [Ca 2+ ] m and H 2 O 2 production in SSM were monitored. Untreated, age-/sex-matched rats served as controls; each group had six rats and data shown as mean±SEM. Results: Compared to controls, isoproterenol rats revealed: (1) Significantly (*p<0.05) increased cardiac tissue Ca 2+ (8.2±0.8 vs. 13.7±1.0*, nEq/mg fat-free dry tissue (FFDT)), which was abrogated ( # p<0.05) by Nebi (8.9±0.4 # ); (2) Reduced cardiac Zn 2+ (82.8±2.4 vs. 78.5±1.0*, ng/mg FFDT), but restored by Nebi (82.4±0.6 # ); (3) Two-fold rise in cardiac 8-isoprostane (111.4±13.7 vs. 232.1±17.2*, pmoles/mg protein), and negated by Nebi (122.3+14.5 # ); (4) Greater opening propensity for mPTP that diminished by Nebi; (5) Elevated [Ca 2+ ] m (88.8±2.5 vs. 161.5±1.0*, nM), but normalized by Nebi (93.3±2.7 # ); and (6) Increased H 2 O 2 production by SSM (97.4±5.3 vs. 142.8±7.0*, pmoles/mg protein/min), and nullified by Nebi (106.8±9.0 # ). Conclusions : Cardioprotection conferred by Nebi, a unique beta-blocker, prevented Ca 2+ overloading and oxidative stress in cardiac tissue and SSM, while simultaneously augmenting antioxidant capacity and promoting mPTP stability. Therapeutic potential of Nebi in patients with acute stressor states remains a provocative possibility that deserves to be explored.


2018 ◽  
Vol 96 (3) ◽  
pp. 295-303 ◽  
Author(s):  
Rafaela Siqueira ◽  
Rafael Colombo ◽  
Adriana Conzatti ◽  
Alexandre Luz de Castro ◽  
Cristina Campos Carraro ◽  
...  

The aim of this study was to evaluate the impact of ovariectomy on oxidative stress in the right ventricle (RV) of female rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). Rats were divided into 4 groups (n = 6 per group): sham (S), sham + MCT (SM), ovariectomized (O), and ovariectomized + MCT (OM). MCT (60 mg·kg−1 i.p.) was injected 1 week after ovariectomy or sham surgery. Three weeks later, echocardiographic analysis and RV catheterisation were performed. RV morphometric, biochemical, and protein expression analysis through Western blotting were done. MCT promoted a slight increase in pulmonary artery pressure, without differences between the SM and OM groups, but did not induce RV hypertrophy. RV hydrogen peroxide increased in the MCT groups, but SOD, CAT, and GPx activities were also enhanced. Non-classical antioxidant defenses diminished in ovariectomized groups, probably due to a decrease in the nuclear factor Nrf2. Hemoxygenase-1 and thioredoxin-1 protein expression was increased in the OM group compared with SM, being accompanied by an elevation in the estrogen receptor β (ER-β). Hemoxygenase-1 and thioredoxin-1 may be involved in the modulation of oxidative stress in the OM group, and this could be responsible for attenuation of PAH and RV remodeling.


Antioxidants ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 123 ◽  
Author(s):  
Lidija Milkovic ◽  
Tea Vukovic ◽  
Neven Zarkovic ◽  
Franz Tatzber ◽  
Egils Bisenieks ◽  
...  

Oxidative stress has been implicated in pathophysiology of different human stress- and age-associated disorders, including osteoporosis for which antioxidants could be considered as therapeutic remedies as was suggested recently. The 1,4-dihydropyridine (DHP) derivatives are known for their pleiotropic activity, with some also acting as antioxidants. To find compounds with potential antioxidative activity, a group of 27 structurally diverse DHPs, as well as one pyridine compound, were studied. A group of 11 DHPs with 10-fold higher antioxidative potential than of uric acid, were further tested in cell model of human osteoblast-like cells. Short-term combined effects of DHPs and 50 µM H2O2 (1-h each), revealed better antioxidative potential of DHPs if administered before a stressor. Indirect 24-h effect of DHPs was evaluated in cells further exposed to mild oxidative stress conditions induced either by H2O2 or tert-butyl hydroperoxide (both 50 µM). Cell growth (viability and proliferation), generation of ROS and intracellular glutathione concentration were evaluated. The promotion of cell growth was highly dependent on the concentrations of DHPs used, type of stressor applied and treatment set-up. Thiocarbatone III-1, E2-134-1 III-4, Carbatone II-1, AV-153 IV-1, and Diethone I could be considered as therapeutic agents for osteoporosis although further research is needed to elucidate their bioactivity mechanisms, in particular in respect to signaling pathways involving 4-hydroxynoneal and related second messengers of free radicals.


Sign in / Sign up

Export Citation Format

Share Document