scholarly journals Mouse models of altered gonadotrophin action: insight into male reproductive disorders

Reproduction ◽  
2014 ◽  
Vol 148 (4) ◽  
pp. R63-R70 ◽  
Author(s):  
Kim C Jonas ◽  
Olayiwola O Oduwole ◽  
Hellevi Peltoketo ◽  
Susana B Rulli ◽  
Ilpo T Huhtaniemi

The advent of technologies to genetically manipulate the mouse genome has revolutionised research approaches, providing a unique platform to study the causality of reproductive disorders in vivo. With the relative ease of generating genetically modified (GM) mouse models, the last two decades have yielded multiple loss-of-function and gain-of-function mutation mouse models to explore the role of gonadotrophins and their receptors in reproductive pathologies. This work has provided key insights into the molecular mechanisms underlying reproductive disorders with altered gonadotrophin action, revealing the fundamental roles of these pituitary hormones and their receptors in the hypothalamic–pituitary–gonadal axis. This review will describe GM mouse models of gonadotrophins and their receptors with enhanced or diminished actions, specifically focusing on the male. We will discuss the mechanistic insights gained from these models into male reproductive disorders, and the relationship and understanding provided into male human reproductive disorders originating from altered gonadotrophin action.

Author(s):  
Marco Giordano ◽  
Alessandra Decio ◽  
Chiara Battistini ◽  
Micol Baronio ◽  
Fabrizio Bianchi ◽  
...  

Abstract Background Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive. Methods The expression of L1CAM was investigated in patient-derived OCSC. The genetic manipulation of L1CAM in OC cells provided gain and loss-of-function models that were then employed in cell biological assays as well as in vivo tumorigenesis experiments to assess the role of L1CAM in OC cell stemness and in OCSC-driven tumor initiation. We applied antibody-mediated neutralization to investigate L1CAM druggability. Biochemical approaches were then combined with functional in vitro assays to study the molecular mechanisms underlying the functional role of L1CAM in OCSC. Results We report that L1CAM is upregulated in patient-derived OCSC. Functional studies showed that L1CAM promotes several stemness-related properties in OC cells, including sphere formation, tumor initiation and chemoresistance. These activities were repressed by an L1CAM-neutralizing antibody, pointing to L1CAM as a druggable target. Mechanistically, L1CAM interacted with and activated fibroblast growth factor receptor-1 (FGFR1), which in turn induced the SRC-mediated activation of STAT3. The inhibition of STAT3 prevented L1CAM-dependent OC stemness and tumor initiation. Conclusions Our study implicate L1CAM in the tumorigenic function of OCSC and point to the L1CAM/FGFR1/SRC/STAT3 signaling pathway as a novel driver of OC stemness. We also provide evidence that targeting this pathway can contribute to OC eradication.


2019 ◽  
Vol 10 (12) ◽  
Author(s):  
Jianfeng Mu ◽  
Pengfei Sun ◽  
Zhiming Ma ◽  
Pengda Sun

AbstractThe most commonly occurring sarcoma of the soft tissue is gastrointestinal stromal tumor (GIST). Treatment and prevention of the disease necessitate an understanding of the molecular mechanisms involved. However, the role of BRD4 in the progression of GIST is still unclear. While it is known there are abundant infiltrating tumor-associated macrophages (TAMs) in the tumor microenvironment, the exact role of these cells has yet to be studied. This work showed an upregulation of BRD4 in GIST that was associated with GIST prognosis. Through gain and loss of function studies, it was found that BRD4 promotes GIST growth and angiogenesis in vitro and in vivo. Mechanistically, BRD4 enhances CCL2 expression by activating the NF-κB signaling pathway. Furthermore, this CCL2 upregulation causes recruitment of macrophages into the tumor leading to tumor growth. A likely mechanism for interactions in the GIST microenvironment has been outlined by this work to show the role and potential use of BRD4 as a treatment target in GIST.


2021 ◽  
Vol 35 ◽  
pp. 205873842110482
Author(s):  
Ke Li ◽  
Huatao Niu ◽  
Ying Wang ◽  
Ruilei Li ◽  
Yuan Zhao ◽  
...  

Introduction: Increasing evidence indicates that lncRNA TUG1 represents an oncogenic factor in cancer. But, the mechanisms by which lncRNA TUG1 contributes to lung adenocarcinoma (LAC) remain undocumented. Methods: The relationship between lncRNA TUG1/miR-138-5p expression and clinical outcomes in patients with LAC was indicated by qPCR, FISH, and TCGA cohort. Gain- or loss-of-function experiments and in vivo tumorigenesis were used to assess the role of lncRNA TUG1 in LAC. The interplay between TUG1 and miR-138-5p was validated by luciferase gene report and RIP assays. qPCR and Western blot analyses were used to investigate the effects of TUG1 on miR-138-5p/HIF1A axis in LAC cells. Results: We found that upregulation of TUG1 or downregulation of miR-138-5p was associated with lymph node or distant metastasis and indicated a poor survival in LAC. Reduced expression of TUG1 restrained the growth of LAC cells, while restored expression of TUG1 had the opposite effects. TUG1 was identified to negatively regulate miR-138-5p expression, and miR-138-5p reversed TUG1-induced cell proliferation by targeting HIF1A. Elevated expression of HIF1A predicted a poor survival in LAC. Conclusion: Our findings demonstrate that lncRNA TUG1 promotes the growth of LAC by regulating miR-138-5p-HIF1A axis.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yi Xin She ◽  
Qing Yang Yu ◽  
Xiao Xiao Tang

AbstractInterleukins, a group of cytokines participating in inflammation and immune response, are proved to be involved in the formation and development of pulmonary fibrosis. In this article, we reviewed the relationship between interleukins and pulmonary fibrosis from the clinical, animal, as well as cellular levels, and discussed the underlying mechanisms in vivo and in vitro. Despite the effects of interleukin-targeted treatment on experimental pulmonary fibrosis, clinical applications are lacking and unsatisfactory. We conclude that intervening in one type of interleukins with similar functions in IPF may not be enough to stop the development of fibrosis as it involves a complex network of regulation mechanisms. Intervening interleukins combined with other existing therapy or targeting interleukins affecting multiple cells/with different functions at the same time may be one of the future directions. Furthermore, the intervention time is critical as some interleukins play different roles at different stages. Further elucidation on these aspects would provide new perspectives on both the pathogenesis mechanism, as well as the therapeutic strategy and drug development.


Author(s):  
Young-Min Han ◽  
Min Sun Kim ◽  
Juyeong Jo ◽  
Daiha Shin ◽  
Seung-Hae Kwon ◽  
...  

AbstractThe fine-tuning of neuroinflammation is crucial for brain homeostasis as well as its immune response. The transcription factor, nuclear factor-κ-B (NFκB) is a key inflammatory player that is antagonized via anti-inflammatory actions exerted by the glucocorticoid receptor (GR). However, technical limitations have restricted our understanding of how GR is involved in the dynamics of NFκB in vivo. In this study, we used an improved lentiviral-based reporter to elucidate the time course of NFκB and GR activities during behavioral changes from sickness to depression induced by a systemic lipopolysaccharide challenge. The trajectory of NFκB activity established a behavioral basis for the NFκB signal transition involved in three phases, sickness-early-phase, normal-middle-phase, and depressive-like-late-phase. The temporal shift in brain GR activity was differentially involved in the transition of NFκB signals during the normal and depressive-like phases. The middle-phase GR effectively inhibited NFκB in a glucocorticoid-dependent manner, but the late-phase GR had no inhibitory action. Furthermore, we revealed the cryptic role of basal GR activity in the early NFκB signal transition, as evidenced by the fact that blocking GR activity with RU486 led to early depressive-like episodes through the emergence of the brain NFκB activity. These results highlight the inhibitory action of GR on NFκB by the basal and activated hypothalamic-pituitary-adrenal (HPA)-axis during body-to-brain inflammatory spread, providing clues about molecular mechanisms underlying systemic inflammation caused by such as COVID-19 infection, leading to depression.


2020 ◽  
Vol 11 (9) ◽  
Author(s):  
Olivia J. Marola ◽  
Stephanie B. Syc-Mazurek ◽  
Gareth R. Howell ◽  
Richard T. Libby

Abstract Glaucoma is a neurodegenerative disease characterized by loss of retinal ganglion cells (RGCs), the output neurons of the retina. Multiple lines of evidence show the endothelin (EDN, also known as ET) system is important in glaucomatous neurodegeneration. To date, the molecular mechanisms within RGCs driving EDN-induced RGC death have not been clarified. The pro-apoptotic transcription factor JUN (the canonical target of JNK signaling) and the endoplasmic reticulum stress effector and transcription factor DNA damage inducible transcript 3 (DDIT3, also known as CHOP) have been shown to act downstream of EDN receptors. Previous studies demonstrated that JUN and DDIT3 were important regulators of RGC death after glaucoma-relevant injures. Here, we characterized EDN insult in vivo and investigated the role of JUN and DDIT3 in EDN-induced RGC death. To accomplish this, EDN1 ligand was intravitreally injected into the eyes of wildtype, Six3-cre+Junfl/fl (Jun−/−), Ddit3 null (Ddit3−/−), and Ddit3−/−Jun−/− mice. Intravitreal EDN1 was sufficient to drive RGC death in vivo. EDN1 insult caused JUN activation in RGCs, and deletion of Jun from the neural retina attenuated RGC death after EDN insult. However, deletion of Ddit3 did not confer significant protection to RGCs after EDN1 insult. These results indicate that EDN caused RGC death via a JUN-dependent mechanism. In addition, EDN signaling is known to elicit potent vasoconstriction. JUN signaling was shown to drive neuronal death after ischemic insult. Therefore, the effects of intravitreal EDN1 on retinal vessel diameter and hypoxia were explored. Intravitreal EDN1 caused transient retinal vasoconstriction and regions of RGC and Müller glia hypoxia. Thus, it remains a possibility that EDN elicits a hypoxic insult to RGCs, causing apoptosis via JNK-JUN signaling. The importance of EDN-induced vasoconstriction and hypoxia in causing RGC death after EDN insult and in models of glaucoma requires further investigation.


2020 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
April Nettesheim ◽  
Myoung Sup Shim ◽  
Angela Dixon ◽  
Urmimala Raychaudhuri ◽  
Haiyan Gong ◽  
...  

Extracellular matrix (ECM) deposition in the trabecular meshwork (TM) is one of the hallmarks of glaucoma, a group of human diseases and leading cause of permanent blindness. The molecular mechanisms underlying ECM deposition in the glaucomatous TM are not known, but it is presumed to be a consequence of excessive synthesis of ECM components, decreased proteolytic degradation, or both. Targeting ECM deposition might represent a therapeutic approach to restore outflow facility in glaucoma. Previous work conducted in our laboratory identified the lysosomal enzyme cathepsin B (CTSB) to be expressed on the cellular surface and to be secreted into the culture media in trabecular meshwork (TM) cells. Here, we further investigated the role of CTSB on ECM remodeling and outflow physiology in vitro and in CSTBko mice. Our results indicate that CTSB localizes in the caveolae and participates in the pericellular degradation of ECM in TM cells. We also report here a novel role of CTSB in regulating the expression of PAI-1 and TGFβ/Smad signaling in TM cells vitro and in vivo in CTSBko mice. We propose enhancing CTSB activity as a novel therapeutic target to attenuate fibrosis and ECM deposition in the glaucomatous outflow pathway.


2021 ◽  
Vol 22 (15) ◽  
pp. 7844
Author(s):  
Jason S. Holsapple ◽  
Ben Cooper ◽  
Susan H. Berry ◽  
Aleksandra Staniszewska ◽  
Bruce M. Dickson ◽  
...  

Extracorporeal Shock Wave Therapy (ESWT) is used clinically in various disorders including chronic wounds for its pro-angiogenic, proliferative, and anti-inflammatory effects. However, the underlying cellular and molecular mechanisms driving therapeutic effects are not well characterized. Macrophages play a key role in all aspects of healing and their dysfunction results in failure to resolve chronic wounds. We investigated the role of ESWT on macrophage activity in chronic wound punch biopsies from patients with non-healing venous ulcers prior to, and two weeks post-ESWT, and in macrophage cultures treated with clinical shockwave intensities (150–500 impulses, 5 Hz, 0.1 mJ/mm2). Using wound area measurements and histological/immunohistochemical analysis of wound biopsies, we show ESWT enhanced healing of chronic ulcers associated with improved wound angiogenesis (CD31 staining), significantly decreased CD68-positive macrophages per biopsy area and generally increased macrophage activation. Shockwave treatment of macrophages in culture significantly boosted uptake of apoptotic cells, healing-associated cytokine and growth factor gene expressions and modulated macrophage morphology suggestive of macrophage activation, all of which contribute to wound resolution. Macrophage ERK activity was enhanced, suggesting one mechanotransduction pathway driving events. Collectively, these in vitro and in vivo findings reveal shockwaves as important regulators of macrophage functions linked with wound healing. This immunomodulation represents an underappreciated role of clinically applied shockwaves, which could be exploited for other macrophage-mediated disorders.


2009 ◽  
Vol 2009 ◽  
pp. 1-13 ◽  
Author(s):  
M. K. Gill-Sharma

In the last 20 years, a pituitary-hypothalamus tissue culture system with intact neural and portal connections has been developed in our lab and used to understand the feedback mechanisms that regulate the secretions of adenohypophyseal hormones and fertility of male rats. In the last decade, several in vivo rat models have also been developed in our lab with a view to substantiate the in vitro findings, in order to delineate the role of pituitary hormones in the regulation of fertility of male rats. These studies have relied on both surgical and pharmacological interventions to modulate the secretions of gonadotropins and testosterone. The interrelationship between the circadian release of reproductive hormones has also been ascertained in normal men. Our studies suggest that testosterone regulates the secretion of prolactin through a long feedback mechanism, which appears to have been conserved from rats to humans. These studies have filled in a major lacuna pertaining to the role of prolactin in male reproductive physiology by demonstrating the interdependence between testosterone and prolactin. Systemic levels of prolactin play a deterministic role in the mechanism of chromatin condensation during spermiogenesis.


2021 ◽  
Vol 27 ◽  
Author(s):  
Li-Ping Yu ◽  
Ting-Ting Shi ◽  
Yan-Qin Li ◽  
Jian-Kang Mu ◽  
Ya-Qin Yang ◽  
...  

: Mitophagy plays an important role in maintaining mitochondrial quality and cell homeostasis through the degradation of damaged, aged, and dysfunctional mitochondria and misfolded proteins. Many human diseases, particularly neurodegenerative diseases, are related to disorders of mitochondrial phagocytosis. Exploring the regulatory mechanisms of mitophagy is of great significance for revealing the molecular mechanisms underlying the related diseases. Herein, we summarize the major mechanisms of mitophagy, the relationship of mitophagy with human diseases, and the role of traditional Chinese medicine (TCM) in mitophagy. These discussions enhance our knowledge of mitophagy and its potential therapeutic targets using TCM.


Sign in / Sign up

Export Citation Format

Share Document