scholarly journals A comprehensive transcriptomic view on the role of SMAD4 gene by RNAi-mediated knockdown in porcine follicular granulosa cells

Reproduction ◽  
2016 ◽  
Vol 152 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Lifan Zhang ◽  
Xing Du ◽  
Shengjuan Wei ◽  
Dongfeng Li ◽  
Qifa Li

As a key mediator of the transforming growth factor-beta (TGF-β) signaling pathway, which plays a pivotal role in regulating mammalian reproductive performance, Sma- and Mad-related protein 4 (SMAD4) is closely associated with the development of ovarian follicular. However, current knowledge of the genome-wide view on the role ofSMAD4gene in mammalian follicular granulosa cells (GCs) is still largely unknown. In the present study, RNA-Seq was performed to investigate the effects ofSMAD4knockdown by RNA interference (SMAD4-siRNA) in porcine follicular GCs. A total of 1025 differentially expressed genes (DEGs), including 530 upregulated genes and 495 downregulated genes, were identified inSMAD4-siRNA treated GCs compared with that treated with NC-siRNA. Furthermore, functional enrichment analysis indicated that upregulated DEGs inSMAD4-siRNA treated cells were mainly enriched in cell-cycle related processes, interferon signaling pathway, and immune system process, while downregulated DEGs inSMAD4-siRNA treated cells were mainly involved in extracellular matrix organization/disassembly, pathogenesis, and cell adhesion. In particular, cell cycle and TGF-β signaling pathway were discovered as the canonical pathways changed underSMAD4-silencing. Taken together, our data revealsSMAD4knockdown alters the expression of numerous genes involved in key biological processes of the development of follicular GCs and provides a novel global clue of the role ofSMAD4gene in porcine follicular GCs, thus improving our understanding of regulatory mechanisms ofSMAD4gene in follicular development.

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 429 ◽  
Author(s):  
Zou ◽  
Zheng ◽  
Deng ◽  
Yang ◽  
Xie ◽  
...  

Circular RNA CDR1as/ciRS-7 functions as an oncogenic regulator in various cancers. However, there has been a lack of systematic and comprehensive analysis to further elucidate its underlying role in cancer. In the current study, we firstly performed a bioinformatics analysis of CDR1as among 868 cancer samples by using RNA-seq datasets of the MiOncoCirc database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), CIBERSORT, Estimating the Proportion of Immune and Cancer cells (EPIC), and the MAlignant Tumors using Expression data (ESTIMATE) algorithm were applied to investigate the underlying functions and pathways. Functional enrichment analysis suggested that CDR1as has roles associated with angiogenesis, extracellular matrix (ECM) organization, integrin binding, and collagen binding. Moreover, pathway analysis indicated that it may regulate the TGF-β signaling pathway and ECM-receptor interaction. Therefore, we used CIBERSORT, EPIC, and the ESTIMATE algorithm to investigate the association between CDR1as expression and the tumor microenvironment. Our data strongly suggest that CDR1as may play a specific role in immune and stromal cell infiltration in tumor tissue, especially those of CD8+ T cells, activated NK cells, M2 macrophages, cancer-associated fibroblasts (CAFs) and endothelial cells. Generally, systematic and comprehensive analyses of CDR1as were conducted to shed light on its underlying pro-cancerous mechanism. CDR1as regulates the TGF-β signaling pathway and ECM-receptor interaction to serve as a mediator in alteration of the tumor microenvironment.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1108
Author(s):  
Dina Hesham ◽  
Shahenda El-Naggar

Embryonal tumor with multilayered rosettes (ETMR) is an aggressive and rare pediatric embryonal brain tumor. Amplification of C19MC microRNA cluster and expression of LIN28 are distinctive features of ETMR. Despite the increasing efforts to decipher ETMR, the biology remains poorly understood. To date, the role of aberrant alternative splicing in ETMR has not been thoroughly investigated. In the current study, a comprehensive analysis was performed on published unprocessed RNA-seq reads of tissue-matched ETMR and fetal controls datasets. Gene expression was quantified in samples using Kallisto/sleuth pipeline. For the alternative splicing analysis, STAR, SplAdder and rMATS were used. Functional enrichment analysis was subsequently performed using Metascape. The expression analysis identified a total of 3622 differentially expressed genes (DEGs) between ETMR and fetal controls while 1627 genes showed differential alternative splicing patterns. Interestingly, genes with significant alternative splicing events in ETMR were identified to be involved in signaling pathways such as ErbB, mTOR and MAPK pathways as well as ubiquitin-mediated proteolysis, cell cycle and autophagy. Moreover, up-regulated DEGs with alternative splicing events were involved in important biological processes including nuclear transport, regulation of cell cycle and regulation of Wnt signaling pathway. These findings highlight the role of aberrant alternative splicing in shaping the ETMR tumor landscape, and the identified pathways constitute potential therapeutic targets.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Wenqing Nai ◽  
Diane Threapleton ◽  
Jingbo Lu ◽  
Kewei Zhang ◽  
Hongyuan Wu ◽  
...  

Abstract Atherosclerosis is the primary cause of cardiovascular events and its molecular mechanism urgently needs to be clarified. In our study, atheromatous plaques (ATH) and macroscopically intact tissue (MIT) sampled from 32 patients were compared and an integrated series of bioinformatic microarray analyses were used to identify altered genes and pathways. Our work showed 816 genes were differentially expressed between ATH and MIT, including 443 that were up-regulated and 373 that were down-regulated in ATH tissues. GO functional-enrichment analysis for differentially expressed genes (DEGs) indicated that genes related to the “immune response” and “muscle contraction” were altered in ATHs. KEGG pathway-enrichment analysis showed that up-regulated DEGs were significantly enriched in the “FcεRI-mediated signaling pathway”, while down-regulated genes were significantly enriched in the “transforming growth factor-β signaling pathway”. Protein-protein interaction network and module analysis demonstrated that VAV1, SYK, LYN and PTPN6 may play critical roles in the network. Additionally, similar observations were seen in a validation study where SYK, LYN and PTPN6 were markedly elevated in ATH. All in all, identification of these genes and pathways not only provides new insights into the pathogenesis of atherosclerosis, but may also aid in the development of prognostic and therapeutic biomarkers for advanced atheroma.


Medicina ◽  
2020 ◽  
Vol 56 (12) ◽  
pp. 637
Author(s):  
Sergiu Pasca ◽  
Ancuta Jurj ◽  
Ciprian Tomuleasa ◽  
Mihnea Zdrenghea

Background and objectives: Mutational analysis has led to a better understanding of acute myeloid leukemia (AML) biology and to an improvement in clinical management. Some of the most important mutations that affect AML biology are represented by mutations in genes related to methylation, more specifically: TET2, IDH1, IDH2 and WT1. Because it has been shown in numerous studies that mutations in these genes lead to similar expression profiles and phenotypes in AML, we decided to assess if mutations in any of those genes interact with other genes important for AML. Materials and Methods: We downloaded the clinical data, mutational profile and expression profile from the TCGA LAML dataset via cBioPortal. Data were analyzed using classical statistical methods and functional enrichment analysis software represented by STRING and GOrilla. Results: The first step we took was to assess the 196 AML cases that had a mutational profile available and observe the mutations that overlapped with TET2/IDH1/2/WT1 mutations. We observed that RUNX1 mutations significantly overlap with TET2/IDH1/2/WT1 mutations. Because of this, we decided to further investigate the role of RUNX1 mutations in modulating the level of RUNX1 mRNA and observed that RUNX1 mutant cases presented higher levels of RUNX1 mRNA. Because there were only 16 cases of RUNX1 mutant samples and that mutations in this gene determined a change in mRNA expression, we further observed the correlation between RUNX1 and other mRNAs in subgroups regarding the presence of hypermethylating mutations and NPM1. Here, we observed that both TET2/IDH1/2/WT1 and NPM1 mutations increase the number of genes negatively correlated with RUNX1 and that these genes were significantly linked to myeloid activation. Conclusions: In the current study, we have shown that NPM1 and TET2/IDH1/2/WT1 mutations increase the number of negative correlations of RUNX1 with other transcripts involved in myeloid differentiation.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Lingling Gao ◽  
Xiao Li ◽  
Qian Guo ◽  
Xin Nie ◽  
Yingying Hao ◽  
...  

Abstract Background Plakophilins (PKPs) are widely involved in gene transcription, translation, and signal transduction, playing a crucial role in tumorigenesis and progression. However, the function and potential mechanism of PKP1/2/3 in ovarian cancer (OC) remains unclear. It’s of great value to explore the expression and prognostic values of PKP1/2/3 and their potential mechanisms, immune infiltration in OC. Methods The expression levels, prognostic values and genetic variations of PKP1/2/3 in OC were explored by various bioinformatics tools and databases, and PKP2/3 were selected for further analyzing their regulation network and immune infiltration. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathways (KEGG) enrichment were also conducted. Finally, the expression and prognosis of PKP2 were validated by immunohistochemistry. Results The expression level and prognosis of PKP1 showed little significance in ovarian cancer, and the expression of PKP2/3 mRNA and protein were upregulated in OC, showing significant correlations with poor prognosis of OC. Functional enrichment analysis showed that PKP2/3 and their correlated genes were significantly enriched in adaptive immune response, cytokine receptor activity, organization of cell–cell junction and extracellular matrix; KEGG analysis showed that PKP2/3 and their significantly correlated genes were involved in signaling pathways including cytokine-mediated signaling pathway, receptor signaling pathway and pathways in cancer. Moreover, PKP2/3 were correlated with lymphocytes and immunomodulators. We confirmed that high expression of PKP2 was significantly associated with advanced stage, poor differentiation and poor prognosis of OC patients. Conclusion Members of plakophilins family showed various degrees of abnormal expressions and prognostic values in ovarian cancer. PKP2/3 played crucial roles in tumorigenesis, aggressiveness, malignant biological behavior and immune infiltration of OC, and can be regarded as potential biomarker for early diagnosis and prognosis evaluation in OC.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 960 ◽  
Author(s):  
Panagiotis Papoutsoglou ◽  
Corentin Louis ◽  
Cédric Coulouarn

Cholangiocarcinoma is a deadly cancer worldwide, associated with a poor prognosis and limited therapeutic options. Although cholangiocarcinoma accounts for less than 15% of liver primary cancer, its silent nature restricts early diagnosis and prevents efficient treatment. Therefore, it is of clinical relevance to better understand the molecular basis of cholangiocarcinoma, including the signaling pathways that contribute to tumor onset and progression. In this review, we discuss the genetic, molecular, and environmental factors that promote cholangiocarcinoma, emphasizing the role of the transforming growth factor β (TGFβ) signaling pathway in the progression of this cancer. We provide an overview of the physiological functions of TGFβ signaling in preserving liver homeostasis and describe how advanced cholangiocarcinoma benefits from the tumor-promoting effects of TGFβ. Moreover, we report the importance of noncoding RNAs as effector molecules downstream of TGFβ during cholangiocarcinoma progression, and conclude by highlighting the need for identifying novel and clinically relevant biomarkers for a better management of patients with cholangiocarcinoma.


2013 ◽  
Vol 2 (5) ◽  
pp. 250-260 ◽  
Author(s):  
Jean-François Denis ◽  
Mathieu Lévesque ◽  
Simon D. Tran ◽  
Aldo-Joseph Camarda ◽  
Stéphane Roy

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5114-5114
Author(s):  
Li-Jing Shen ◽  
Fang-Yuan Chen ◽  
Lan-Fang Cao ◽  
Yong Zhang ◽  
Hua Zhong

Abstract Abstract 5114 Introduction The MYCN oncogene encodes a basic helix-loop-helix/leucine zipper (bHLH/LZ) transcription factor that is frequently overexpressed in hematologic malignancies neoplasms (including acute leukemia, T-cell lymphoma, and so on). MYCN acts as a poor prognostic marker to promote an aggressive phenotype. However, the mechanisms of action and pathways affected by MYCN are still largely unclear. Methods We induced murine MYCN gene overexpression in embryonic zebrafish through heat-shock promoter and established stable germline Tg(MYCN:HSE:EGFP) zebrafish. RNA was extracted at 3 days post fertilization from wild type (WT) and transgenic zebrafish F1 generation (TG) embryo hematopoietic cells, collected by the flow cytometer, for microarray analysis. The samples were processed and subsequently analyzed in triplicate on Zebrafish Oligo Microarrays (Agilent Technologies), containing 43, 554 sets of probe, at the Advanced Throughput Inc. The microarrays were scanned in an Agilent DNA Microarray Scanner and the images were processed using Feature Extraction software. A False Discovery Rate≤0. 05 for overall interactions effect and P<0. 001 between comparisons were used to determine differentially expressed genes (DEG). Ingenuity Pathway Analysis and DAVID performed the functional analysis of DEG. Results Microarray analysis revealed 626 (342 genes up-regulated and 284 genes down-regulated) DEG that showed >2-fold change in TG comparing with that of WT. Using functional enrichment analysis by DAVID, several signaling pathways were regulated in TG samples (Table 1). MAPK signaling pathway was high activated through FGF, PDGF, BDNF and CACN high expression, promoting up-regulated of Ras and MKP, enhancing phosphorylation and leading to increase of cells proliferation. TGFβ signaling was inhibited by up-regulation of IFN Ã and Smad 6/7, which negative control of TGFβR and Smad 2/3. Further, we found that MYCN enhances the expression of skp2, via decreased p21 and increased CDK2, promoting cell cycle progression (Fig. 1). In addition, overexpression of MYCN weakened the function of mismatch repair, base excision repair, while increased apoptosis pathway mediated by p53 (up-regulated Bid gene). Meanwhile, Glycolysis/gluconeogenesis pathway was significantly up-regulated in TG fish. Conclusions Overexpression of MYCN induced up-regulation of cell proliferation and Glycolysis/gluconeogenesis pathway (as the Warburg effect in rapidly proliferating tumors), attenuation of repair function, all of which are phenomena associated with proliferation and malignancies transformation of blood cell feature. We found that MYCN down-regulates p27kip1, p57kip2 and p21cip1 through up-regulate Skp2, thus up-regulates CDK2, CycA, CycB, CycD and CycE. All above changes shortened the time taken to progress through the cell cycle. Increased MARK signaling and decreased TGFβ signaling pathways also contributed to promote cell cycle. (Red star marks the up-regulated genes). Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Ben Li ◽  
Bo Zhang ◽  
Qiong Wu ◽  
Xinming Chen ◽  
Xiang Cao ◽  
...  

Background: Peroxiredoxins (Prxs) comprise antioxidant factors that are widely found in prokaryotes and eukaryotes. Abnormal expression of Prxs is closely related to tumorigenesis. Methods: This study examined the prognostic value and expression of Prxs in lung cancer by Human Protein Atlas (HPA), Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, Kaplan-Meier Plotter, cBioPortal and Functional Enrichment Analysis Tool (FunRich) databases. Results: We found that Prx1/2/3/4/5 were overexpressed in both lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) relative to normal lung cells. However, the expression level of Prx6 was lower in LUAD and higher in LUSC than normal lung cells. The level of Prx3 and Prx6 were associated with pathological stage. Prognostic analysis showed that elevated Prx1 and Prx2 expression were correlated with low Overall Survival (OS), whereas high Prx5 and Prx6 expression level predicted high OS. Conclusions: Our results effectively revealed the level of Prxs in lung cancer and its influence on the prognosis of lung carcinoma, contributing to the study of the role of Prxs in tumorigenesis.


Sign in / Sign up

Export Citation Format

Share Document