Functional Enrichment Analysis by David in Transgenic MYCN Zebrafish Model

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5114-5114
Author(s):  
Li-Jing Shen ◽  
Fang-Yuan Chen ◽  
Lan-Fang Cao ◽  
Yong Zhang ◽  
Hua Zhong

Abstract Abstract 5114 Introduction The MYCN oncogene encodes a basic helix-loop-helix/leucine zipper (bHLH/LZ) transcription factor that is frequently overexpressed in hematologic malignancies neoplasms (including acute leukemia, T-cell lymphoma, and so on). MYCN acts as a poor prognostic marker to promote an aggressive phenotype. However, the mechanisms of action and pathways affected by MYCN are still largely unclear. Methods We induced murine MYCN gene overexpression in embryonic zebrafish through heat-shock promoter and established stable germline Tg(MYCN:HSE:EGFP) zebrafish. RNA was extracted at 3 days post fertilization from wild type (WT) and transgenic zebrafish F1 generation (TG) embryo hematopoietic cells, collected by the flow cytometer, for microarray analysis. The samples were processed and subsequently analyzed in triplicate on Zebrafish Oligo Microarrays (Agilent Technologies), containing 43, 554 sets of probe, at the Advanced Throughput Inc. The microarrays were scanned in an Agilent DNA Microarray Scanner and the images were processed using Feature Extraction software. A False Discovery Rate≤0. 05 for overall interactions effect and P<0. 001 between comparisons were used to determine differentially expressed genes (DEG). Ingenuity Pathway Analysis and DAVID performed the functional analysis of DEG. Results Microarray analysis revealed 626 (342 genes up-regulated and 284 genes down-regulated) DEG that showed >2-fold change in TG comparing with that of WT. Using functional enrichment analysis by DAVID, several signaling pathways were regulated in TG samples (Table 1). MAPK signaling pathway was high activated through FGF, PDGF, BDNF and CACN high expression, promoting up-regulated of Ras and MKP, enhancing phosphorylation and leading to increase of cells proliferation. TGFβ signaling was inhibited by up-regulation of IFN Ã and Smad 6/7, which negative control of TGFβR and Smad 2/3. Further, we found that MYCN enhances the expression of skp2, via decreased p21 and increased CDK2, promoting cell cycle progression (Fig. 1). In addition, overexpression of MYCN weakened the function of mismatch repair, base excision repair, while increased apoptosis pathway mediated by p53 (up-regulated Bid gene). Meanwhile, Glycolysis/gluconeogenesis pathway was significantly up-regulated in TG fish. Conclusions Overexpression of MYCN induced up-regulation of cell proliferation and Glycolysis/gluconeogenesis pathway (as the Warburg effect in rapidly proliferating tumors), attenuation of repair function, all of which are phenomena associated with proliferation and malignancies transformation of blood cell feature. We found that MYCN down-regulates p27kip1, p57kip2 and p21cip1 through up-regulate Skp2, thus up-regulates CDK2, CycA, CycB, CycD and CycE. All above changes shortened the time taken to progress through the cell cycle. Increased MARK signaling and decreased TGFβ signaling pathways also contributed to promote cell cycle. (Red star marks the up-regulated genes). Disclosures: No relevant conflicts of interest to declare.

2021 ◽  
Vol 12 ◽  
Author(s):  
Yani Dong ◽  
Likang Lyu ◽  
Daiqiang Zhang ◽  
Jing Li ◽  
Haishen Wen ◽  
...  

Long non-coding RNAs (lncRNAs) have been reported to be involved in multiple biological processes. However, the roles of lncRNAs in the reproduction of half-smooth tongue sole (Cynoglossus semilaevis) are unclear, especially in the molecular regulatory mechanism driving ovarian development and ovulation. Thus, to explore the mRNA and lncRNA mechanisms regulating reproduction, we collected tongue sole ovaries in three stages for RNA sequencing. In stage IV vs. V, we identified 312 differentially expressed (DE) mRNAs and 58 DE lncRNAs. In stage V vs. VI, we identified 1,059 DE mRNAs and 187 DE lncRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that DE mRNAs were enriched in ECM-receptor interaction, oocyte meiosis and steroid hormone biosynthesis pathways. Furthermore, we carried out gene set enrichment analysis (GSEA) to identify potential reproduction related-pathways additionally, such as fatty metabolism and retinol metabolism. Based on enrichment analysis, DE mRNAs with a potential role in reproduction were selected and classified into six categories, including signal transduction, cell growth and death, immune response, metabolism, transport and catabolism, and cell junction. The interactions of DE lncRNAs and mRNAs were predicted according to antisense, cis-, and trans-regulatory mechanisms. We constructed a competing endogenous RNA (ceRNA) network. Several lncRNAs were predicted to regulate genes related to reproduction including cyp17a1, cyp19a1, mmp14, pgr, and hsd17b1. The functional enrichment analysis of these target genes of lncRNAs revealed that they were involved in several signaling pathways, such as the TGF-beta, Wnt signaling, and MAPK signaling pathways and reproduction related-pathways such as the progesterone-mediated oocyte maturation, oocyte meiosis, and GnRH signaling pathway. RT-qPCR analysis showed that two lncRNAs (XR_522278.2 and XR_522171.2) were mainly expressed in the ovary. Dual-fluorescence in situ hybridization experiments showed that both XR_522278.2 and XR_522171.2 colocalized with their target genes cyp17a1 and cyp19a1, respectively, in the follicular cell layer. The results further demonstrated that lncRNAs might be involved in the biological processes by modulating gene expression. Taken together, this study provides lncRNA profiles in the ovary of tongue sole and further insight into the role of lncRNA involvement in regulating reproduction in tongue sole.


Genes ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1108
Author(s):  
Dina Hesham ◽  
Shahenda El-Naggar

Embryonal tumor with multilayered rosettes (ETMR) is an aggressive and rare pediatric embryonal brain tumor. Amplification of C19MC microRNA cluster and expression of LIN28 are distinctive features of ETMR. Despite the increasing efforts to decipher ETMR, the biology remains poorly understood. To date, the role of aberrant alternative splicing in ETMR has not been thoroughly investigated. In the current study, a comprehensive analysis was performed on published unprocessed RNA-seq reads of tissue-matched ETMR and fetal controls datasets. Gene expression was quantified in samples using Kallisto/sleuth pipeline. For the alternative splicing analysis, STAR, SplAdder and rMATS were used. Functional enrichment analysis was subsequently performed using Metascape. The expression analysis identified a total of 3622 differentially expressed genes (DEGs) between ETMR and fetal controls while 1627 genes showed differential alternative splicing patterns. Interestingly, genes with significant alternative splicing events in ETMR were identified to be involved in signaling pathways such as ErbB, mTOR and MAPK pathways as well as ubiquitin-mediated proteolysis, cell cycle and autophagy. Moreover, up-regulated DEGs with alternative splicing events were involved in important biological processes including nuclear transport, regulation of cell cycle and regulation of Wnt signaling pathway. These findings highlight the role of aberrant alternative splicing in shaping the ETMR tumor landscape, and the identified pathways constitute potential therapeutic targets.


BMC Cancer ◽  
2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Siteng Chen ◽  
Encheng Zhang ◽  
Tuanjie Guo ◽  
Jialiang Shao ◽  
Tao Wang ◽  
...  

Abstract Background It is of great urgency to explore useful prognostic markers for patients with clear cell renal cell carcinoma (ccRCC). Prognostic models based on ferroptosis-related gene (FRG) in ccRCC is poorly reported for now. Methods Comprehensive analysis of 22 FRGs were performed in 629 ccRCC samples from two independent patient cohorts. We carried out least absolute shrinkage and selection operator analysis to screen out prognosis-related FRGs and constructed prognosis model for patients with ccRCC. Weighted gene co-expression network analysis was also carried out for potential functional enrichment analysis. Results Based on the TCGA cohort, a total of 11 prognosis-associated FRGs were selected for the construction of the prognosis model. Significantly differential overall survival (hazard ratio = 3.61, 95% CI: 2.68–4.87, p < 0.0001) was observed between patients with high and low FRG score in the TCGA cohort, which was further verified in the CPTAC cohort with hazard ratio value of 5.13 (95% CI: 1.65–15.90, p = 0.019). Subgroup survival analysis revealed that our FRG score could significantly distinguish patients with high survival risk among different tumor stages and different tumor grades. Functional enrichment analysis illustrated that the process of cell cycle, including cell cycle-mitotic pathway, cytokinesis pathway and nuclear division pathway, might be involved in the regulation of ccRCC through ferroptosis. Conclusions We developed and verified a FRG signature for the prognosis prediction of patients with ccRCC, which could act as a risk factor and help to update the tumor staging system when integrated with clinicopathological characteristics. Cell cycle-related pathways might be involved in the regulation of ccRCC through ferroptosis.


2021 ◽  
Author(s):  
Shuo Wu ◽  
Xing Lv ◽  
Yan Zhang ◽  
Xi Xu ◽  
Feng Zhao ◽  
...  

Purpose: N6-methyladenosine (m6A) is among the most abundant mRNA modifications in eukaryote. The aim of this study was to investigate function of m6A mRNA methylation in lung cancer and the underlying mechanism. Methods: Microarray analysis was performed to detect the differences in RNA expression between cancerous and adjacent non-cancerous tissue samples. The target mRNAs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Hierarchical clustering of RNAs was conducted to identify distinct m6A methylation or expression patterns between the samples. Results: In this study, some differentially expressed genes (DEGs) of mRNAs were identified, including up-regulated SPP1 and down-regulated pRB. Functional enrichment analysis revealed that while differential hypermethylation was related to cell cycle, intracellular part and protein binding, the main pathway involved herpes simplex virus 1 infection related to down-regulated AKT, Araf1 and BCL2A1. In the meantime, sexual reproduction, cohesin complex and portein C-terminus binding was functionally linked to differential hypomethylation, while fluid shear stress and atherosclerosis were identified as the main pathways related to up-regulated GST and CNP. Conclusions: We showed that lung cancer development involved differential expression of SPP1 and pRB mRNA, as well as m6A mRNA methylation in AKT, APAF1, BCL2A1, GST and CNP genes.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Yongchang Zheng ◽  
Yue Shi ◽  
Si Yu ◽  
Yuanyuan Han ◽  
Kai Kang ◽  
...  

GTSE1 is well correlated with tumor progression; however, little is known regarding its role in liver cancer prognosis. By analyzing the hepatocellular carcinoma (HCC) datasets in GEO and TCGA databases, we showed that high expression of GTSE1 was correlated with advanced pathologic stage and poor prognosis of HCC patients. To investigate underlying molecular mechanism, we generated GTSE1 knockdown HCC cell line and explored the effects of GTSE1 deficiency in cell growth. Between GTSE1 knockdown and wild-type HCC cells, we identified 979 differentially expressed genes (520 downregulated and 459 upregulated genes) in the analysis of microarray-based gene expression profiling. Functional enrichment analysis of DEGs suggested that S phase was dysregulated without GTSE1 expression, which was further verified from flow cytometry analysis. Moreover, three other DEGs: CDC20, PCNA, and MCM6, were also found contributing to GTSE1-related cell cycle arrest and to be associated with poor overall survival of HCC patients. In conclusion, GTSE1, together with CDC20, PCNA, and MCM6, may synergistically promote adverse prognosis in HCC by activating cell cycle. Genes like GTSE1, CDC20, PCNA, and MCM6 may be promising prognostic molecular biomarkers in liver cancer.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1643
Author(s):  
Jiahui Cai ◽  
Ziling Wu ◽  
Yanwei Hao ◽  
Yuanlong Liu ◽  
Zunyang Song ◽  
...  

As an inhibitor of ethylene receptors, 1-methylcyclopropene (1-MCP) can delay the ripening of papaya. However, improper 1-MCP treatment will cause a rubbery texture in papaya. Understanding of the underlying mechanism is still lacking. In the present work, a comparative sRNA analysis was conducted after different 1-MCP treatments and identified a total of 213 miRNAs, of which 44 were known miRNAs and 169 were novel miRNAs in papaya. Comprehensive functional enrichment analysis indicated that plant hormone signal pathways play an important role in fruit ripening. Through the comparative analysis of sRNAs and transcriptome sequencing, a total of 11 miRNAs and 12 target genes were associated with the ethylene and auxin signaling pathways. A total of 1741 target genes of miRNAs were identified by degradome sequencing, and nine miRNAs and eight miRNAs were differentially expressed under the ethylene and auxin signaling pathways, respectively. The network regulation diagram of miRNAs and target genes during fruit ripening was drawn. The expression of 11 miRNAs and 12 target genes was verified by RT-qPCR. The target gene verification showed that cpa-miR390a and cpa-miR396 target CpARF19-like and CpERF RAP2-12-like, respectively, affecting the ethylene and auxin signaling pathways and, therefore, papaya ripening.


2021 ◽  
Vol 12 ◽  
Author(s):  
Siqin Zhang ◽  
Xinxing Lai ◽  
Xin Wang ◽  
Gang Liu ◽  
Zhenzhong Wang ◽  
...  

Guizhi-Fuling capsule (GZFLC), originated from a classical traditional Chinese herbal formula Guizhi-Fuling Wan, has been clinically used for primary dysmenorrhea in China. Nonetheless, the underlying pharmacological mechanisms of GZFLC remain unclear. The integration of computational and experimental methods of network pharmacology might be a promising way to decipher the mechanisms. In this study, the target profiles of 51 representative compounds of GZFLC were first predicted by a high-accuracy algorithm, drugCIPHER-CS, and the network target of GZFLC was identified. Then, potential functional modules of GZFLC on primary dysmenorrhea were investigated using functional enrichment analysis. Potential bioactive compounds were recognized by hierarchical clustering analysis of GZFLC compounds and first-line anti-dysmenorrhea drugs. Furthermore, the potential anti-dysmenorrhea mechanisms of GZFLC were verified through enzyme activity assays and immunofluorescence tests. Moreover, effects of GZFLC on primary dysmenorrhea were evaluated in oxytocin-induced dysmenorrhea murine model. In the network target analysis, GZFLC may act on five functional modules of pain, inflammation, endocrine, blood circulation and energy metabolism. Integrating computational and experimental approaches, we found that GZFLC significantly inhibited the writhing response and reduced the degree of uterine lesions in oxytocin-induced dysmenorrhea murine model. Furthermore, GZFLC may partially alleviate primary dysmenorrhea by inhibiting cyclooxygenase 2 (COX2) and downregulating MAPK signaling pathway. Consequently, GZFLC presented pain relief and sustained benefits for primary dysmenorrhea. This study could provide a scientific approach for deciphering pharmacological mechanisms of herbal formulae through network pharmacology.


Author(s):  
Lecai Xiong ◽  
Yuquan Bai ◽  
Minglin Zhu ◽  
Zetian Yang ◽  
Jinping Zhao ◽  
...  

Lung cancer predominates in cancer-related deaths worldwide, with lung adenocarcinoma (LUAD) being a common histological subtype of lung cancer. The aim at this study was to search for biomarkers associated with the progression and prognosis of LUAD. We have integrated the expression profiles of 1174 lung cancer patients from five GEO datasets (GSE18842, GSE19804, GSE30219, GSE40791 and GSE68465) and identified a set of differentially expressed genes. Functional enrichment analysis showed that these genes are closely related to the progression of LUAD, such as cell cycle, mitosis and adhesion. Cytoscape software was used to establish a protein-protein interaction (PPI) network to analyze important modules using Molecular Complex Detection (MCODE), and finally CCNB1, BUB1B and TTK were selected for further study. The study found that compared with non-tumor lung tissue, CCNB1, BUB1B and TTK are highly expressed in LUAD. Kaplan-Meier analysis showed that CCNB1, BUB1B and TTK were negatively correlated with the overall survival and disease-free survival of patients. Gene set enrichment analysis (GSEA) demonstrated that for the samples of any hub gene highly expressed, most of the functional gene sets enriched in cell cycle. In summary, CCNB1, BUB1B and TTK can be used as biomarkers of poor prognosis of LUAD. The high expression of CCNB1, BUB1B and TTK can accelerate the progression of LUAD and lead to shorter survival, suggesting that they may be potential targets for treatment in LUAD.


2019 ◽  
Author(s):  
Hanna Helgeland ◽  
Ingvild Gabrielsen ◽  
Helle Akselsen ◽  
Arvind Y.M. Sundaram ◽  
Siri Tennebø Flåm ◽  
...  

Abstract Background: The thymus is a highly specialized organ of the immune system where T cell precursors develop and differentiate into self-tolerant CD4+ or CD8+ T cells. No studies to date have investigated how the human transcriptome profiles differ, between T cells still residing in the thymus and T cells in the periphery.Results: We have performed high-throughput RNA sequencing to characterize the transcriptomes of primary single positive (SP) CD4+ and CD8+ T cells from infant thymic tissue, as well as primary CD4+ and CD8+ T cells from infant and adult peripheral blood, to enable the comparisons across tissues and ages. In addition, we have assessed the expression of candidate genes related to autoimmune diseases in thymic CD4+ and CD8+ T cells. Thymic SP T cells displayed a broader transcriptome than peripheral T cells, indicated by a higher number of uniquely expressed genes. Comparing T cells of thymic and blood origin, revealed more differentially expressed genes, than between infant and adult blood. Functional enrichment analysis revealed an over-representation of genes involved in cell cycle and replication in thymic T cells, whereas infant blood T cells were dominated by immune related terms. Comparing adult and infant blood T cells, the former was enriched for inflammatory response, cytokine production and biological adhesion, while upregulated genes in infant blood T cells were associated with cell cycle, cell death and gene expression.Conclusion: This study provides valuable insight into the transcriptomes of the human primary SP T cells still residing within the thymus, and offers a unique comparison to the more frequently studied primary blood derived T cells. We discovered that genes involved in migration, homing and recirculation, between peripheral blood and lymphatic tissue, were particularly active in infant blood T cells, suggesting active migration and recirculation in young children.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hang-Xing Yu ◽  
Wei Lin ◽  
Kang Yang ◽  
Li-Juan Wei ◽  
Jun-Li Chen ◽  
...  

Background: Hirudin has been widely used in the treatment of antifibrosis. Previous studies have shown that hirudin can effectively improve the clinical remission rate of chronic kidney disease. However, the mechanism of its renal protection has not been systematically investigated.Methods: In this study, the reliability of UUO-induced renal interstitial fibrosis was evaluated by histopathological verification. High-throughput transcriptome sequencing was used to elucidate the molecular mechanism of hirudin, differentially expressed mRNAs were identified, and their functions were analyzed by GO analysis and GSEA. In addition, the RNA-seq results were validated by in vitro and vivo experiments.Results: We found 322 identical differential expressed genes (IDEs) in the UUO hirudin-treated group compared with the sham group. Functional enrichment analysis indicated that cellular amino acid metabolic processes were the most obvious enrichment pathways in biological processes. In terms of molecular functional enrichment analysis, IDEs were mainly enriched in coenzyme binding, pyridoxal phosphate binding and other pathways. In addition, microbody is the most obvious pathway for cellular components. A total of 115 signaling pathways were enriched, and AMPK, JAK-STAT, and PI3K-Akt signaling pathways were the important signaling pathways enriched. We found that PI3K, p-Akt, and mTOR expression were significantly reduced by hirudin treatment. In particular, our results showed that hirudin could induce a decrease in the expression of autophagy-related proteins such as P62, LC3, Beclin-1 in TGF-β1-induced NRK-52E cells.Conclusion: Our results suggest that hirudin may protect the kidney by ameliorating renal autophagy impairment through modulating the PI3K/Akt pathway.


Sign in / Sign up

Export Citation Format

Share Document