Follistatin-like I promotes endometriosis by increasing proinflammatory factors and promoting angiogenesis

Reproduction ◽  
2021 ◽  
Author(s):  
Sha-Ting Lei ◽  
Ming-Qing Li ◽  
Yan-Ling Cao ◽  
Shu-Hui Hou ◽  
Hai-Yan Peng ◽  
...  

Endometriosis (EMS) is a chronic benign inflammatory disease characterized by the growth of endometrial-like tissue in aberrant locations outside of the uterine cavity. Angiogenesis and abnormal immune responses are the fundamental requirements of endometriotic lesion survival in the peritoneal cavity. Follistatin-like I (FSTL1) is a secreted glycoprotein that exhibits varied expression levels in cardiovascular disease, cancer and arthritis. However, the role of FSTL1 in the development of EMS remains to be fully elucidated. Results of the present study demonstrated that the expression of FSTL1 was significantly increased in ectopic endometrial stromal cells (ESCs) and peritoneal fluid from patients with EMS, compared the control group. Both conditions of hypoxia and estrogen treatment induced human ESCs to produce increased levels of FSTL1 and disco-interacting protein 2 homolog A (DIP2A). Furthermore, the expression levels of DIP2A, IL-8 and IL-1β were increased in FSTL1 overexpressed HESCs. Additionally, FSTL1 treatment increased the proliferation of HUVECs in a dose-dependent manner in vitro, and markedly increased the tube formation of HUVECs. Moreover, treatment with FSTL1 facilitated M1 polarization of macrophages, increased the secretion of proinflammatory factors and inhibited the expression of scavenger receptor CD36. Results of the present study suggested that the elevated expression of FSTL1 may play a key role in accelerating the development of EMS via enhancing the secretion of proinflammatory factors and promoting angiogenesis.

2014 ◽  
Vol 34 (3) ◽  
pp. 260-265 ◽  
Author(s):  
F Yesildal ◽  
FN Aydin ◽  
S Deveci ◽  
S Tekin ◽  
I Aydin ◽  
...  

Angiogenesis is the process of generating new blood vessels from preexisting vessels and is considered essential in many pathological conditions. The purpose of the present study is to evaluate the effect of aspartame on angiogenesis in vivo chick chorioallantoic membrane (CAM) and wound-healing models as well as in vitro 2,3-bis-2 H-tetrazolium-5-carboxanilide (XTT) and tube formation assays. In CAM assay, aspartame increased angiogenesis in a concentration-dependent manner. Compared with the control group, aspartame has significantly increased vessel proliferation ( p < 0.001). In addition, in vivo rat model of skin wound-healing study showed that aspartame group had better healing than control group, and this was statistically significant at p < 0.05. There was a slight proliferative effect of aspartame on human umbilical vein endothelial cells on XTT assay in vitro, but it was not statistically significant; and there was no antiangiogenic effect of aspartame on tube formation assay in vitro. These results provide evidence that aspartame induces angiogenesis in vitro and in vivo; so regular use may have undesirable effect on susceptible cases.


2006 ◽  
Vol 91 (12) ◽  
pp. 4825-4835 ◽  
Author(s):  
Jiadi Wen ◽  
Hua Zhu ◽  
Shuko Murakami ◽  
Peter C. K. Leung ◽  
Colin D. MacCalman

Abstract Context: Gonadal steroids are key regulators of the extracellular matrix remodeling events that occur in the human endometrium during each menstrual cycle. The spatiotemporal expression of A Disintegrin And Metalloproteinase with ThromboSpondin repeats (ADAMTS)-1 in human endometrial stroma in vivo suggests that this novel metalloproteinase may contribute to this tightly regulated developmental process. Objective: The objective of the study was to determine whether progesterone (P4), 17β-estradiol (E2), or the nonaromatizable androgen dihydrotestosterone (DHT), alone or in combination, is capable of regulating ADAMTS-1 mRNA and protein levels in human endometrial stromal cells in a concentration- and time-dependent manner. Design: A real-time quantitative PCR strategy and Western blotting were used to examine ADAMTS-1 mRNA and protein expression levels in primary cultures of human endometrial stromal cells. Results: P4 and DHT but not E2 increased the levels of the ADAMTS-1 mRNA transcript and protein species (110 kDa) present in endometrial stromal cells in vitro in a concentration- and time-dependent manner. A combination of P4 and DHT resulted in an additional increase in stromal ADAMTS-1 expression, whereas E2 attenuated the regulatory effects of P4 and DHT in a concentration-dependent manner. The antisteroidal compounds, mifepristone (RU486) and hydroxyflutamide, were also found to inhibit specifically the P4- and DHT-mediated increase in ADAMTS-1 mRNA and protein expression levels in these primary cell cultures in a concentration-dependent manner, respectively. Conclusions: These studies demonstrate that progestins, androgens, and estrogens, alone and in combination, have distinct regulatory effects on ADAMTS-1 mRNA and protein expression levels in human endometrial stromal cells in vitro.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2021 ◽  
Vol 10 (2) ◽  
pp. 183
Author(s):  
Nadia Meyer ◽  
Lars Brodowski ◽  
Katja Richter ◽  
Constantin S. von Kaisenberg ◽  
Bianca Schröder-Heurich ◽  
...  

Endothelial dysfunction is a primary feature of several cardiovascular diseases. Endothelial colony-forming cells (ECFCs) represent a highly proliferative subtype of endothelial progenitor cells (EPCs), which are involved in neovascularization and vascular repair. Statins are known to improve the outcome of cardiovascular diseases via pleiotropic effects. We hypothesized that treatment with the 3-hydroxy-3-methyl-glutaryl–coenzyme A (HMG-CoA) reductase inhibitor pravastatin increases ECFCs’ functional capacities and regulates the expression of proteins which modulate endothelial health in a favourable manner. Umbilical cord blood derived ECFCs were incubated with different concentrations of pravastatin with or without mevalonate, a key intermediate in cholesterol synthesis. Functional capacities such as migration, proliferation and tube formation were addressed in corresponding in vitro assays. mRNA and protein levels or phosphorylation of protein kinase B (AKT), endothelial nitric oxide synthase (eNOS), heme oxygenase-1 (HO-1), vascular endothelial growth factor A (VEGF-A), placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and endoglin (Eng) were analyzed by real time PCR or immunoblot, respectively. Proliferation, migration and tube formation of ECFCs were enhanced after pravastatin treatment, and AKT- and eNOS-phosphorylation were augmented. Further, expression levels of HO-1, VEGF-A and PlGF were increased, whereas expression levels of sFlt-1 and Eng were decreased. Pravastatin induced effects were reversible by the addition of mevalonate. Pravastatin induces beneficial effects on ECFC function, angiogenic signaling and protein expression. These effects may contribute to understand the pleiotropic function of statins as well as to provide a promising option to improve ECFCs’ condition in cell therapy in order to ameliorate endothelial dysfunction.


1995 ◽  
Vol 79 (1) ◽  
pp. 146-150 ◽  
Author(s):  
T. Rohde ◽  
H. Ullum ◽  
J. P. Rasmussen ◽  
J. H. Kristensen ◽  
E. Newsholme ◽  
...  

Glutamine increased the proliferative response and the lymphokine-activated killer cell activity of blood mononuclear cells isolated from normal healthy subjects (n = 6) in a dose-dependent manner, with optimum at 0.3–1.0 mM. The relative fraction of CD3+, CD4+, CD8+, CD14+, CD16+, and CD19+ cells was not changed by glutamine at a concentration of 0.6 mM, except in the phytohemagglutinin-stimulated proliferation experiment where the fraction of CD4+, and therefore CD3+ cells, increased. The natural killer cell activity was not influenced by glutamine. Human immunodeficiency virus (HIV)-seropositive subjects (n = 8) who performed concentric bicycle exercise for 1 h at 75% of maximal O2 consumption had an overall lower phytohemagglutinin-stimulated proliferative response, compared with the HIV-seronegative control group (n = 7). The proliferation during exercise was lower in both the HIV-seropositive and the HIV-seronegative group. Addition of glutamine in vitro did not normalize the lower proliferation in the HIV-seropositive group or the attenuated proliferation seen during exercise in both groups.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Lihua Yin ◽  
Wenxiao Cheng ◽  
Zishun Qin ◽  
Hongdou Yu ◽  
Zhanhai Yu ◽  
...  

This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2,COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo.


2020 ◽  
Author(s):  
Chuan-jiang Liu ◽  
Qiang Fu ◽  
Wenjing Zhou ◽  
Xu Zhang ◽  
Rui Chen ◽  
...  

Abstract Background: Methylprednisolone (MP) is a synthetic corticosteroid with potent anti-inflammatory and antioxidant properties used as therapy for a variety of diseases. The underlying mechanism of MP to reduce acute pancreatitis still needs to be elucidated.Methods: Twenty-four male C57BL/6 mice (6-8 weeks) were used to establish SAP mouse model by administering an intraperitoneal injection of Cae and LPS. Amylase expression levels of serum and PLF were measured with an amylase assay kit. The concentrations of IL-1β and TNF-α in the serum and PLF were detected by ELISA. The level of pancreatic and lung tissue damage and inflammation was assessed by H&E staining and immunofluorescence staining. Western blot and qPCR were used to detect the expression levels of NLRP3, IL-1β and TNF-αin vivo and in vitro.Results: In this study, we found MP, used in the early phase of SAP, decreased the levels of IL-1β and TNF-α in serum and peritoneal lavage fluids (PLF), reduced the level of serum amylase and the expression of MPO in lung tissue, attenuated the pathological injury of the pancreas and lungs in a dose-dependent manner. The expression of NLRP3 and IL-1β in pancreas and lungs was down-regulated significantly depending on the MP concentration. In vitro, MP reduced the levels of IL-1β and TNF-α by down-regulating the expression of NLRP3, IL-1β and p-NF-κB in isolated peritoneal macrophages. Conclusion: MP can attenuate the injury of pancreas and lungs, and the inflammatory response in SAP mice by down-regulating the activation of NF-κB and the NLRP3 inflammasome.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Fawang Zhu ◽  
Shuai Yuan ◽  
Jing Li ◽  
Yun Mou ◽  
Zhiqiang Hu ◽  
...  

Background. Cilengitide is a selective αvβ3 and αvβ5 integrin inhibitor. We sought to investigate the effect of cilengitide on the neovascularization of abdominal aortic plaques in rabbits and explore its underlying antiangiogenic mechanism on human umbilical vein endothelial cells (HUVECs). Materials and Methods. For the in vivo experiment, the abdominal aortic plaque model of rabbits was established and injected with different doses of cilengitide or saline for 14 consecutive days. Conventional ultrasound (CUS) and contrast-enhanced ultrasound (CEUS) were applied to measure the vascular structure and blood flow parameters. CD31 immunofluorescence staining was performed for examining neovascularization. Relative expressions of vascular endothelial growth factor (VEGF) and integrin of the plaque were determined. For in vitro experiments, HUVECs were tested for proliferation, migration, apoptosis, and tube formation in the presence of different doses of cilengitide. Relative expressions of VEGF, integrin, and Ras/ERK/AKT signaling pathways were determined for the exploration of underlying mechanism. Results. CEUS showed modestly increased size and eccentricity index (EI) of plaques in the control group. Different degrees of reduced size and EI of plaques were observed in two cilengitide treatment groups. The expressions of VEGF and integrin in the plaque were inhibited after 14 days of cilengitide treatment. The neovascularization and apoptosis of the abdominal aorta were also significantly alleviated by cilengitide treatment. For in vitro experiments, cilengitide treatment was found to inhibit the proliferation, migration, and tube formation of HUVECs. However, cilengitide did not induce the apoptosis of HUVECs. A higher dose of cilengitide inhibited the mRNA expression of VEGF-A, β3, and β5, but not αV. Lastly, cilengitide treatment significantly inhibited the Ras/ERK/AKT pathway in the HUVECs. Conclusions. This study showed that cilengitide effectively inhibited the growth of plaque size by inhibiting the angiogenesis of the abdominal aortic plaques and blocking the VEGF-mediated angiogenic effect on HUVECs.


2021 ◽  
Author(s):  
Tairen Chen ◽  
Mengjing Wu ◽  
Yuting Dong ◽  
Bin Kong ◽  
Yufang Cai ◽  
...  

Abstract Purpose: Whether FSH promotes follicle growth by inhibiting the Hippo signalling pathway.METHODS: Ovaries were cultured in vitro into a control group (no intervention), an FSH group (0.3 IU/mL FSH), and a VP group (10 µg/mL vetiporfin). HE staining and follicle counts were performed at each stage after 3 hours of in vitro culture. Immunohistochemistry was performed to study the expression levels of LATS2, YAP, PLATS2, and PYAP, and their expression levels in each group were also analysed by Western blot.The number of secondary follicles was significantly increased in the FSH group, the arrangement of granulosa cells was neater, the nuclear fixation was reduced, and the number of atretic follicles was decreased in the VP group. The number of secondary follicles was significantly increased, the number of atretic follicles was reduced, and granulosa cell nuclear consolidation was reduced in the VP+FSH group. Immunohistochemistry showed that LATS2 and YAP expression levels were significantly increased and PLATS2 and PYAP expression levels were relatively decreased in the FSH group, PYAP and PLATS2 expression levels were significantly increased and YAP expression was significantly decreased in the VP group, and YAP and LATS2 expression levels were significantly increased and PYAP and PLATS2 expression levels were significantly decreased in the VP+FSH group. By Western blot, LATS2 and YAP were elevated and PYAP and PLAT2 were decreased in the FSH group, LATS2 and YAP were decreased and PYAP and PLATS were significantly elevated in the VP group, and LATS2 and YAP were elevated and PYAP and PLATS2 were decreased in the VP+FSH group.CONCLUSION: FSH promotes follicle development by inhibiting the Hippo signalling pathway.


Sign in / Sign up

Export Citation Format

Share Document