scholarly journals Improvement of Sorption Parameters of Nickel Ions on Bentonite in the Result of its Irradiation by Microwaves

2017 ◽  
Vol 18 (4) ◽  
pp. 431-437 ◽  
Author(s):  
L. Sysa ◽  
L. Shevchuk ◽  
A. Kontsur

The adsorption isotherms of nickel ions from aqueous solutions on bentonite, a natural argillaceous material, previously prepared using ultrahigh-frequency electromagnetic waves ("microwaves") were researched in the article. The phase composition of the sorbent was studied by applying the X-ray powder method. Bentonite sample being pre-wetted and irradiated by microwaves shows 2.7 times better sorption properties than the untreated (native) sample, which was shown on the example of the adsorption process of nickel ions from model solutions in static conditions. The sorption parameters prepared by using the "microwaved" and the native samples of bentonite were calculated according to the Langmuir adsorption equations. The barrier density of nickel in the irradiated sorbent is 16.4 mg/g (0.28 mmol/g), whereas for native bentonite the value of the analogous parameter is 6.0 mg/g (0.10 mmol/g). The reason for such an increase in sorption properties may be the change in the crystalline structure and distribution of micropores on the surface of the sorbent under the action of "microwaves" in the aqueous medium. The determinants in the pre-preparation of sorbent by "microwaves" are the ultimate power and time of irradiation. 

2010 ◽  
Vol 9 (3) ◽  
pp. 373-379 ◽  
Author(s):  
Sunardi Sunardi ◽  
Yateman Arryanto ◽  
Sutarno Sutarno

Adsorption of gibberellic acid (GA3) onto raw and purified kaolin from Tatakan, South Kalimantan was investigated in this study. Purification process was done by sedimentation to obtain relative pure kaolinite. Raw and purified kaolin samples were characterized by Fourier transformed infrared (FTIR) spectroscopy and X-ray diffractometer (XRD). The adsorption process was carried out in a batch system and the effect of pH, contact time and GA3 concentration were experimentally studied to evaluate the adsorption capacity. The amount of GA3 adsorbed was determined by UV spectrophotometer. The result showed that the raw kaolin from South Kalimantan consist of 53.36% kaolinite, 29.47% halloysite, 4.47% chlorite, 11.32% quartz and 1.38% christobalite and the purified kaolin consist of 73.03% kaolinite, 22.6% halloysite, 0.77% chlorite, 1.37% quartz and 2.23% christobalite Adsorption experimental indicate that the optimum adsorption took place at pH 7 and contact time for 4 h. Adsorption of GA3 was described by the Langmuir adsorption isotherm model with adsorption capacity of 8.91 mg/g on raw kaolin and 10.38 mg/g on purified kaolin.   Keywords: kaolin, gibberellic acid, adsorption


2016 ◽  
Vol 88 (12) ◽  
pp. 1143-1154
Author(s):  
Andreea Gabor ◽  
Corneliu Mircea Davidescu ◽  
Adina Negrea ◽  
Mihaela Ciopec ◽  
Cornelia Muntean ◽  
...  

Abstract This paper presents the sorption properties of a new adsorbent material prepared by impregnating Amberlite XAD 7 polymer with sodium β-glycerophosphate. For impregnation, the pellicular vacuum solvent vaporization method was employed. The functionalization was evidenced by energy dispersive X-ray analysis. The usefulness of this material and its performances were studied for the adsorption of the rare earth element La(III) in batch experiments. The influence of various parameters affecting the adsorption of lanthanum like contact time, initial concentration, pH value, and temperature was studied. The kinetic of the adsorption process was best described by the pseudo-second-order model. Sips isotherm was found to be the best fit of the equilibrium data. The maximum adsorption capacity of the functionalized material was of 33.8 mg La(III)/g. The values of thermodynamic parameters (ΔGo, ΔHo, ΔSo) showed that the adsorption process was endothermic and spontaneous. The results proved that Amberlite XAD 7 functionalized with sodium β-glycerophosphate is an efficient adsorbent for the removal of La(III) ions from aqueous solutions. Quantum chemistry was performed using Spartan software.


2018 ◽  
Vol 78 (12) ◽  
pp. 2469-2480
Author(s):  
Avat Ghasemi ◽  
Mahmoud Reza Sohrabi ◽  
Fereshteh Motiee

Abstract A new sawdust/magnetite nanoparticles/polyethyleneimine (SD/MNP/PEI) nanocomposite was synthesized by grafting polyethyleneimine (PEI) to magnetic sawdust. Features of SD/MNP/PEI were characterized using Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and scanning electron microscopy (SEM). SD/MNP/PEI was used as an adsorbent for the removal of lead (Pb (II)) from aqueous solution. The effects of independent variables including pH of solution, adsorbent dose and contact time were performed and adsorption isotherms were obtained. Experimental results show that priority effective variables were pH and the amount of nanocomposite, and it was found that the sorption capacity increases with the increasing phase contact time. The adsorption process followed the Langmuir adsorption isotherm. Although SD and SD/MNP do not show a high affinity for the adsorption of Pb (II) in aqueous media, polyethyleneimine cross-linked on SD/MNP showed 40 and 66% increases, respectively, in the adsorption of Pb (II) compared to the SD and SD/MNP. It was found that SD/MNP/PEI removes more efficiently lead ions from aqueous solutions than the SD, SD/MNP. Desorption of the lead from the SD/MNP/PEI was conducted. It was proved that SD/MNP/PEI has excellent properties and can be used as a sorbent of multi-use.


2021 ◽  
Author(s):  
Rachid EL Kaim Billah ◽  
Savaş Kaya ◽  
Selçuk Şimşek ◽  
El Mahdi Halim ◽  
Mahfoud Agunaou ◽  
...  

Abstract In this work, Fluorapatite has been prepared and successfully applied for the removal of As (VI). The materials prepared have been characterized using X-ray diffraction (XRD), infrared transform transform spectroscopy. Fourier (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Thermogravimetric analysis (TGA) and zero load point pH (pHPZC) were also considered as part of these characterizations. In this work, several parameters affecting the adsorption process were studied, such as: the mass effect, time, pH, and the initial concentration effect. The value of the regression coefficient showed that the data The experimental results corresponded best to the pseudo-second order (PSO) model, while the Langmuir adsorption isotherms best described the equilibrium adsorption data with the highest qm of 43.10 mg / g. Finally, FapC has been successfully reused for more than 5 cycles without significant loss of its sorption capacity.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4483
Author(s):  
Yuyingnan Liu ◽  
Xinrui Xu ◽  
Bin Qu ◽  
Xiaofeng Liu ◽  
Weiming Yi ◽  
...  

In this study, corn cob was used as raw material and modified methods employing KOH and KMnO4 were used to prepare activated carbon with high adsorption capacity for mercury ions. Experiments on the effects of different influencing factors on the adsorption of mercury ions were undertaken. The results showed that when modified with KOH, the optimal adsorption time was 120 min, the optimum pH was 4; when modified with KMnO4, the optimal adsorption time was 60 min, the optimal pH was 3, and the optimal amount of adsorbent and the initial concentration were both 0.40 g/L and 100 mg/L under both modified conditions. The adsorption process conforms to the pseudo-second-order kinetic model and Langmuir model. Scanning electron microscopy and energy-dispersive X-ray spectroscopy (SEM-EDS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and Zeta potential characterization results showed that the adsorption process is mainly physical adsorption, surface complexation and ion exchange.


Langmuir ◽  
2014 ◽  
Vol 30 (13) ◽  
pp. 3749-3753 ◽  
Author(s):  
Shinjiro Fujiyama ◽  
Natsumi Kamiya ◽  
Koji Nishi ◽  
Yoshinobu Yokomori

2016 ◽  
Vol 5 (2) ◽  
pp. 144
Author(s):  
Doungmo Giscard ◽  
Théophile Kamgaing ◽  
Ranil Clément Tonleu Temgoua ◽  
Ervice Ymele ◽  
Francis Merlin Melataguia Tchieno ◽  
...  

In this study, sorption properties of a synthesized anionic clay were enhanced by the intercalation of oxalate ions in its interlayer space. The pristine and modified clay materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and thermal analysis. These techniques confirmed the presence of oxalate ions in the interlayer space of the clay. The intercalated clay was then used as a matrix for the sorption in batch mode of nickel ions in aqueous solution. The influence of a number of parameters such as contact time, pH, initial concentration of the analyte and adsorbent dosage were studied. The maximum adsorption of nickel was obtained at pH 6, that is, about 90% Ni2+ removal. The adsorbent/adsorbate equilibrium follows a pseudo-second order kinetics and best matches the Langmuir model. The modified clay was shown to be efficient matrix for the sorption of nickel ions.


2010 ◽  
Vol 75 ◽  
pp. 230-239
Author(s):  
Herbert O. Moser ◽  
Linke Jian ◽  
Shenbaga M.P. Kalaiselvi ◽  
Selven Virasawmy ◽  
Sivakumar M. Maniam ◽  
...  

The function of metamaterials relies on their resonant response to electromagnetic waves in characteristic spectral bands. To make metamaterials homogeneous, the size of the basic resonant element should be less than 10% of the wavelength. For the THz range up to the visible, structure details of 50 nm to 30 μm are required as are high aspect ratios, tall heights, and large areas. For such specifications, lithography, in particular, synchrotron radiation deep X-ray lithography, is the method of choice. X-ray masks are made via primary pattern generation by means of electron or laser writing. Several different X-ray masks and accurate mask-substrate alignment are necessary for architectures requiring multi-level lithography. Lithography is commonly followed by electroplating of metallic replica. The process can also yield mould inserts for cost-effective manufacture by plastic moulding. We made metamaterials based on rod-split-rings, split-cylinders, S-string bi-layer chips, and S-string meta-foils. Left-handed resonance bands range from 2.4 to 216 THz. Latest is the all-metal self-supported flexible meta-foil with pass-bands of 45% up to 70% transmission at 3.4 to 4.5 THz depending on geometrical parameters.


2021 ◽  
Vol 8 (3) ◽  
pp. 183-193
Author(s):  
M. Anugrah Rizky Pambudi ◽  
Nanda Prayogo ◽  
Muhammad Nadjib ◽  
Ratna Ediati

UiO-66, as one of the metal-organic framework (MOF) compounds, has been used to treat some anionic and cationic dye waste. In order to determine the adsorption selectivity decisively, the synthesis of UiO-66 and UiO-66 modulated with acetic acid had been carried out, along with their adsorption tests for Eriochrome Black T (EBT) dye solution. The synthesis was performed by utilizing a solvothermal method with the reaction mixtures of zirconium (IV) chloride (ZrCl4) and terephthalic acid (H2BDC) as a ligand heated at 120 oC for 24 hours. Both UiO-66 (without acetic acid) and acetic acid modulated UiO-66 were obtained as a white powder. Acetic acid as a modulator was added and being investigated for the adsorption capability compared to the normal UiO-66. This study showed that normal UiO-66 exhibited better adsorption than acetic acid modulated UiO-66 with a mmol ratio of acetic acid:ligand varied from 50:1, 100:1, and 150:1. Acetic acid modulated UiO-66 with a mmol ratio of 50 exhibited the best crystallinity as observed by using x-ray diffraction. It can be concluded that the adsorption of EBT using normal and acetic acid modulated UiO-66 obeyed the pseudo-second-order reaction rate law as well as the Langmuir adsorption isotherm pattern.


Sign in / Sign up

Export Citation Format

Share Document