scholarly journals Optical-electronic monitoring system of biomedical indicators

2020 ◽  
Vol 21 (4) ◽  
pp. 779-784
Author(s):  
G.I. Barylo ◽  
M.S. Ivakh ◽  
Z.M. Mykytiuk ◽  
I.P. Kremer

The work is devoted to the development of medical systems for monitoring biomedical indicators. The problem of developing a universal hardware software-controlled control system for the diagnosis of biological objects is solved. The main requirements for such a system are a wide range of functionality for combining different methods of measurement transformation and compliance with modern trends in the development of microelectronic sensors. Given the requirements for modern microcircuitry, in particular for sensing devices of the Internet of Things, the signal path of the sensors is implemented on the basis of PSoC family 5LP Family Cypress. Approbation of the developed system is carried out in the course of research of the character of optical radiation in the course of measurement of biomedical indicators.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2417
Author(s):  
Andrzej Michalski ◽  
Zbigniew Watral

This article presents the problems of powering wireless sensor networks operating in the structures of the Internet of Things (IoT). This issue was discussed on the example of a universal end node in IoT technology containing RFID (Radio Frequency Identification) tags. The basic methods of signal transmission in these types of networks are discussed and their impact on the basic requirements such as range, transmission speed, low energy consumption, and the maximum number of devices that can simultaneously operate in the network. The issue of low power consumption of devices used in IoT solutions is one of the main research objects. The analysis of possible communication protocols has shown that there is a possibility of effective optimization in this area. The wide range of power sources available on the market, used in nodes of wireless sensor networks, was compared. The alternative possibilities of powering the network nodes from Energy Harvesting (EH) generators are presented.


Author(s):  
Aboobucker Ilmudeen

Today, the terms big data, artificial intelligence, and internet of things (IoT) are many-fold as these are linked with various applications, technologies, eco-systems, and services in the business domain. The recent industrial and technological revolution have become popular ever before, and the cross-border e-commerce activities are emerging very rapidly. As a result, it supports to the growth of economic globalization that has strategic importance for the advancement of e-commerce activities across the globe. In the business industry, the wide range applications of technologies like big data, artificial intelligence, and internet of things in cross-border e-commerce have grown exponential. This chapter systematically reviews the role of big data, artificial intelligence, and IoT in cross-border e-commerce and proposes a conceptually-designed smart-integrated cross-border e-commerce platform.


Sensors ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 283
Author(s):  
Fawad Ali Khan ◽  
Rafidah Md Noor ◽  
Miss Laiha Mat Kiah ◽  
Ismail Ahmedy ◽  
Mohd Yamani ◽  
...  

Internet of Things (IoT) facilitates a wide range of applications through sensor-based connected devices that require bandwidth and other network resources. Enhancement of efficient utilization of a heterogeneous IoT network is an open optimization problem that is mostly suffered by network flooding. Redundant, unwanted, and flooded queries are major causes of inefficient utilization of resources. Several query control mechanisms in the literature claimed to cater to the issues related to bandwidth, cost, and Quality of Service (QoS). This research article presented a statistical performance evaluation of different query control mechanisms that addressed minimization of energy consumption, energy cost and network flooding. Specifically, it evaluated the performance measure of Query Control Mechanism (QCM) for QoS-enabled layered-based clustering for reactive flooding in the Internet of Things. By statistical means, this study inferred the significant achievement of the QCM algorithm that outperformed the prevailing algorithms, i.e., Divide-and-Conquer (DnC), Service Level Agreements (SLA), and Hybrid Energy-aware Clustering Protocol for IoT (Hy-IoT) for identification and elimination of redundant flooding queries. The inferential analysis for performance evaluation of algorithms was measured in terms of three scenarios, i.e., energy consumption, delays and throughput with different intervals of traffic, malicious mote and malicious mote with realistic condition. It is evident from the results that the QCM algorithm outperforms the existing algorithms and the statistical probability value “P” < 0.05 indicates the performance of QCM is significant at the 95% confidence interval. Hence, it could be inferred from findings that the performance of the QCM algorithm was substantial as compared to that of other algorithms.


Informatics ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 40
Author(s):  
Evgenia Princi ◽  
Nicole C. Krämer

Smart technology in the area of the Internet of Things (IoT) that extensively gathers user data in order to provide full functioning has become ubiquitous in our everyday life. At the workplace, individual’s privacy is especially threatened by the deployment of smart monitoring technology due to unbalanced power relations. In this work we argue that employees’ acceptance of smart monitoring systems can be predicted based on privacy calculus considerations and trust. Therefore, in an online experiment (N = 661) we examined employees’ acceptance of a smart emergency detection system, depending on the rescue value of the system and whether the system’s tracking is privacy-invading or privacy-preserving. We hypothesized that trust in the employer, perceived benefits and risks serve as predictors of system acceptance. Moreover, the moderating effect of privacy concerns is analyzed.


Sensors ◽  
2020 ◽  
Vol 20 (5) ◽  
pp. 1400 ◽  
Author(s):  
Javier Silvestre-Blanes ◽  
Víctor Sempere-Payá ◽  
Teresa Albero-Albero

Today, a wide range of developments and paradigms require the use of embedded systems characterized by restrictions on their computing capacity, consumption, cost, and network connection. The evolution of the Internet of Things (IoT) towards Industrial IoT (IIoT) or the Internet of Multimedia Things (IoMT), its impact within the 4.0 industry, the evolution of cloud computing towards edge or fog computing, also called near-sensor computing, or the increase in the use of embedded vision, are current examples of this trend. One of the most common methods of reducing energy consumption is the use of processor frequency scaling, based on a particular policy. The algorithms to define this policy are intended to obtain good responses to the workloads that occur in smarthphones. There has been no study that allows a correct definition of these algorithms for workloads such as those expected in the above scenarios. This paper presents a method to determine the operating parameters of the dynamic governor algorithm called Interactive, which offers significant improvements in power consumption, without reducing the performance of the application. These improvements depend on the load that the system has to support, so the results are evaluated against three different loads, from higher to lower, showing improvements ranging from 62% to 26%.


2013 ◽  
Vol 760-762 ◽  
pp. 1936-1941
Author(s):  
Guo Fang Kuang ◽  
Chun Lin Kuang

IPv6 has huge address space, while 128 bit IPv6 address is divided into two parts, namely the address prefix and the interface address. IPv6 provides a wide range of security policies for Internet of Things safety system. The security of the Internet of Things applications interface IPv6 address can be used to identify the node. This paper proposes construction security architecture of the Internet of Things based on IPv6 technology. In the allocation of the state address safety issues and mobile IPv6 binding buffer security update issues, are able to meet the security needs of the Internet of Things.


2019 ◽  
Vol 52 (5-6) ◽  
pp. 338-353 ◽  
Author(s):  
Murat Aydos ◽  
Yılmaz Vural ◽  
Adem Tekerek

Internet of Things is the next-generation Internet network created by intelligent objects with software and sensors, employed in a wide range of fields such as automotive, construction, health, textile, education and transportation. With the advent of Industry 4.0, Internet of Things has been started to be used and it has led to the emergence of innovative business models. The processing and production capabilities of Internet of Things objects in hidden and critical data provide great advantages for the next generation of Internet. However, the integrated features of Internet of Things objects cause vulnerabilities in terms of security, making them the target of cyber threats. In this study, a security model which offers an integrated risk-based Internet of Things security approach for the Internet of Things vulnerabilities while providing detailed information about Internet of Things and the types of attacks targeting Internet of Things is proposed. In addition, in this study, the vulnerabilities of Internet of Things were explained by classifying attack types threatening the physical layer, network layer, data processing layer and application layer. Moreover, the risk-based security model has been proposed by examining the vulnerabilities and threats of smart objects that generate the Internet of Things. The proposed Internet of Things model is a holistic security model that separately evaluates the Internet of Things layers against vulnerabilities and threats based on the risk-level approach.


IoT ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 401-426
Author(s):  
Seng W. Loke

The Internet of Things is emerging as a vast, inter-connected space of devices and things surrounding people, many of which are increasingly capable of autonomous action, from automatically sending data to cloud servers for analysis, changing the behaviour of smart objects, to changing the physical environment. A wide range of ethical concerns has arisen in their usage and development in recent years. Such concerns are exacerbated by the increasing autonomy given to connected things. This paper reviews, via examples, the landscape of ethical issues, and some recent approaches to address these issues concerning connected things behaving autonomously as part of the Internet of Things. We consider ethical issues in relation to device operations and accompanying algorithms. Examples of concerns include unsecured consumer devices, data collection with health-related Internet of Things, hackable vehicles, behaviour of autonomous vehicles in dilemma situations, accountability with Internet of Things systems, algorithmic bias, uncontrolled cooperation among things, and automation affecting user choice and control. Current ideas towards addressing a range of ethical concerns are reviewed and compared, including programming ethical behaviour, white-box algorithms, black-box validation, algorithmic social contracts, enveloping IoT systems, and guidelines and code of ethics for IoT developers; a suggestion from the analysis is that a multi-pronged approach could be useful based on the context of operation and deployment.


Author(s):  
John M. Carroll ◽  
Patrick C. Shih ◽  
Jess Kropczynski ◽  
Guoray Cai ◽  
Mary Beth Rosson ◽  
...  

The Internet of Things integrates entities of the physical world by making them addressable through the Internet, and making the Internet accessible through physical objects. We draw on our own previous design research in community informatics to explore a critical elaboration of the Internet of Things: The Internet of Places (IoP). IoP seeks to support awareness, engagement, and interaction pertaining to individual and collective human experiences, meaning making, activity, intentions, and values by computationally leveraging and integrating a wide range of human data with places to which those data refer. We describe design scenarios, prototypes, and user research at the scale of local community. We identify a critical alternative for humankind of hyperlocal community, enabling greater citizen awareness, engagement, participation, and power. We suggest that the Internet of Places at community-scale is the next generation infrastructure for community networks in the 40-year tradition of the Berkeley Community Memory.


2021 ◽  
Vol 10 (3) ◽  
pp. 46
Author(s):  
Rachid Mafamane ◽  
Asmae Ait Mansour ◽  
Mourad Ouadou ◽  
Khalid Minaoui

Due to the emergence of the Internet of Things, the need for effective identification and traceability has increased. Radio-frequency identification (RFID), a simple and cheap approach for gathering information, has therefore drawn the attention of research communities. However, this system suffers from problems caused by high density, such as collisions and duplication. Thus, the deployment of RFID is more effective in a dense environment where it may improve overage and delays. A wide range of solutions have been proposed; however, the majority of these are based on the application context. In this paper, we propose a general MAC layer protocol FTSMAC (Frequency Time Scheme MAC) in which the spectrum frequency is efficiently used by dividing the signal into different time slots via a messaging mechanism used by RFID readers. This limits the collisions in high-density RFID deployment that affect the performance of the system. Thus, our solution allows the communication system to converge to a stable state within a convenient time.


Sign in / Sign up

Export Citation Format

Share Document