scholarly journals Essential Function of the Serine Hydroxymethyl Transferase (SHMT) Gene During Rapid Syncytial Cell Cycles in Drosophila

2017 ◽  
Vol 7 (7) ◽  
pp. 2305-2314 ◽  
Author(s):  
Franziska Winkler ◽  
Maria Kriebel ◽  
Michaela Clever ◽  
Stephanie Gröning ◽  
Jörg Großhans

Abstract Many metabolic enzymes are evolutionarily highly conserved and serve a central function in the catabolism and anabolism of cells. The serine hydroxymethyl transferase (SHMT) catalyzing the conversion of serine and glycine and vice versa feeds into tetrahydrofolate (THF)-mediated C1 metabolism. We identified a Drosophila mutation in SHMT (CG3011) in a screen for blastoderm mutants. Embryos from SHMT mutant germline clones specifically arrest the cell cycle in interphase 13 at the time of the midblastula transition (MBT) and prior to cellularization. The phenotype is due to a loss of enzymatic activity as it cannot be rescued by an allele with a point mutation in the catalytic center but by an allele based on the SHMT coding sequence from Escherichia coli. The onset of zygotic gene expression and degradation of maternal RNAs in SHMT mutant embryos are largely similar to that in wild-type embryos. The specific timing of the defects in SHMT mutants indicates that at least one of the SHMT-dependent metabolites becomes limiting in interphase 13, if it is not produced by the embryo. Our data suggest that mutant eggs contain maternally-provided and SHMT-dependent metabolites in amounts that suffice for early development until interphase 13.

2002 ◽  
Vol 13 (10) ◽  
pp. 3662-3671 ◽  
Author(s):  
Thomas J. McGarry

Geminin is an unstable inhibitor of DNA replication that gets destroyed at the metaphase/anaphase transition. The biological function of geminin has been difficult to determine because it is not homologous to a characterized protein and has pleiotropic effects when overexpressed. Geminin is thought to prevent a second round of initiation during S or G2 phase. In some assays, geminin induces uncommitted embryonic cells to differentiate as neurons. In this study, geminin was eliminated from developing Xenopus embryos by using antisense techniques. Geminin-deficient embryos show a novel and unusual phenotype: they complete the early cleavage divisions normally but arrest in G2 phase immediately after the midblastula transition. The arrest requires Chk1, the effector kinase of the DNA replication/DNA damage checkpoint pathway. The results indicate that geminin has an essential function and that loss of this function prevents entry into mitosis by a Chk1-dependent mechanism. Geminin may be required to maintain the structural integrity of the genome or it may directly down-regulate Chk1 activity. The data also show that during the embryonic cell cycles, rereplication is almost entirely prevented by geminin-independent mechanisms.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Jiyong Su ◽  
Karl Forchhammer

A highly conserved arginine residue is close to the catalytic center of PPM/PP2C-type protein phosphatases. Different crystal structures of PPM/PP2C homologues revealed that the guanidinium side chain of this arginine residue can adopt variable conformations and may bind ligands, suggesting an important role of this residue during catalysis. In this paper, we randomly mutated Arginine 13 of tPphA, a PPM/PP2C-type phosphatase from Thermosynechococcus elongatus, and obtained 18 different amino acid variants. The generated variants were tested towards p-nitrophenyl phosphate and various phosphopeptides. Towards p-nitrophenyl phosphate as substrate, twelve variants showed 3–7 times higher Km values than wild-type tPphA and four variants (R13D, R13F, R13L, and R13W) completely lost activity. Strikingly, these variants were still able to dephosphorylate phosphopeptides, although with strongly reduced activity. The specific inability of some Arg-13 variants to hydrolyze p-nitrophenyl phosphate highlights the importance of additional substrate interactions apart from the substrate phosphate for catalysis. The properties of the R13 variants indicate that this residue assists in substrate binding.


2004 ◽  
Vol 78 (21) ◽  
pp. 11879-11889 ◽  
Author(s):  
Walter Fuchs ◽  
Barbara G. Klupp ◽  
Harald Granzow ◽  
Thomas C. Mettenleiter

ABSTRACT The large tegument protein encoded by the UL36 gene of pseudorabies virus (PrV) physically interacts with the product of the adjacent UL37 gene (B. G. Klupp, W. Fuchs, H. Granzow, R. Nixdorf, and T. C. Mettenleiter, J. Virol. 76:3065-3071, 2002). To analyze UL36 function, two PrV recombinants were generated by mutagenesis of an infectious PrV full-length clone in Escherichia coli: PrV-ΔUL36F exhibited a deletion of virtually the complete UL36 coding region, whereas PrV-UL36BSF contained two in-frame deletions of 238 codons spanning the predicted UL37 binding domain. Coimmunoprecipitation experiments confirmed that the mutated gene product of PrV-UL36BSF did not interact with the UL37 protein. Like the previously described PrV-ΔUL37 (B. G. Klupp, H. Granzow, and T. C. Mettenleiter, J. Virol. 75:8927-8936, 2001) but in contrast to PrV-ΔUL36F, PrV-UL36BSF was able to replicate in rabbit kidney (RK13) cells, although maximum virus titers were reduced ca. 50-fold and plaque diameters were reduced by ca. 45% compared to wild-type PrV. PrV-ΔUL36F was able to productively replicate after repair of the deleted gene or in a trans-complementing cell line. Electron microscopy of infected RK13 cells revealed that PrV-UL36BSF and phenotypically complemented PrV-ΔUL36F were capable of nucleocapsid formation and egress from the nucleus by primary envelopment and deenvelopment at the nuclear membrane. However, reenvelopment of nucleocapsids in the cytoplasm was blocked. Only virus-like particles without capsids were released efficiently from cells. Interestingly, cytoplasmic nucleocapsids of PrV-UL36BSF but not of PrV-ΔUL36F were found in large ordered structures similar to those which had previously been observed with PrV-ΔUL37. In summary, our results demonstrate that the interaction between the UL36 and UL37 proteins is important but not strictly essential for the formation of secondary enveloped, infectious PrV particles. Furthermore, UL36 possesses an essential function during virus replication which is independent of its ability to bind the UL37 protein.


1986 ◽  
Vol 6 (4) ◽  
pp. 1218-1227
Author(s):  
L Naumovski ◽  
E C Friedberg

The RAD3 gene of Saccharomyces cerevisiae, which is involved in excision repair of DNA and is essential for cell viability, was mutagenized by site-specific and random mutagenesis. Site-specific mutagenesis was targeted to two regions near the 5' and 3' ends of the coding region, selected on the basis of amino acid sequence homology with known nucleotide binding and with known specific DNA-binding proteins, respectively. Two mutations in the putative nucleotide-binding region and one in the putative DNA-binding region inactivate the excision repair function of the gene, but not the essential function. A gene encoding two tandem mutations in the putative DNA-binding region is defective in both excision repair and essential functions of RAD3. Seven plasmids were isolated following random mutagenesis with hydroxylamine. Mutations in six of these plasmids were identified by gap repair of mutant plasmids from the chromosome of strains with previously mapped rad3 mutations, followed by DNA sequencing. Three of these contain missense mutations which inactivate only the excision repair function. The other three carry nonsense mutations which inactivate both the excision repair and essential functions. Collectively our results indicate that the RAD3 excision repair function is more sensitive to inactivation than is the essential function. Overexpression of wild-type Rad3 protein and a number of rad3 mutant proteins did not affect the UV resistance of wild-type yeast cells. However, overexpression of Rad3-2 protein rendered wild-type cells partially UV sensitive, indicating that excess Rad3-2 protein is dominant to the wild-type form. These and other results suggest that Rad3-2 protein retains its affinity for damaged DNA or other substrates, but is not catalytically active in excision repair.


2020 ◽  
Vol 202 (21) ◽  
Author(s):  
Elizabeth M. Hart ◽  
Thomas J. Silhavy

ABSTRACT The heteropentomeric β-barrel assembly machine (BAM complex) is responsible for folding and inserting a diverse array of β-barrel outer membrane proteins (OMPs) into the outer membrane (OM) of Gram-negative bacteria. The BAM complex contains two essential proteins, the β-barrel OMP BamA and a lipoprotein BamD, whereas the auxiliary lipoproteins BamBCE are individually nonessential. Here, we identify and characterize three bamA mutations, the E-to-K change at position 470 (bamAE470K), the A-to-P change at position 496 (bamAA496P), and the A-to-S change at position 499 (bamAA499S), that suppress the otherwise lethal ΔbamD, ΔbamB ΔbamC ΔbamE, and ΔbamC ΔbamD ΔbamE mutations. The viability of cells lacking different combinations of BAM complex lipoproteins provides the opportunity to examine the role of the individual proteins in OMP assembly. Results show that, in wild-type cells, BamBCE share a redundant function; at least one of these lipoproteins must be present to allow BamD to coordinate productively with BamA. Besides BamA regulation, BamD shares an additional essential function that is redundant with a second function of BamB. Remarkably, bamAE470K suppresses both, allowing the construction of a BAM complex composed solely of BamAE470K that is able to assemble OMPs in the absence of BamBCDE. This work demonstrates that the BAM complex lipoproteins do not participate in the catalytic folding of OMP substrates but rather function to increase the efficiency of the assembly process by coordinating and regulating the assembly of diverse OMP substrates. IMPORTANCE The folding and insertion of β-barrel outer membrane proteins (OMPs) are conserved processes in mitochondria, chloroplasts, and Gram-negative bacteria. In Gram-negative bacteria, OMPs are assembled into the outer membrane (OM) by the heteropentomeric β-barrel assembly machine (BAM complex). In this study, we probe the function of the individual BAM proteins and how they coordinate assembly of a diverse family of OMPs. Furthermore, we identify a gain-of-function bamA mutant capable of assembling OMPs independently of all four other BAM proteins. This work advances our understanding of OMP assembly and sheds light on how this process is distinct in Gram-negative bacteria.


1985 ◽  
Vol 46 (3) ◽  
pp. 263-271 ◽  
Author(s):  
Maria Jerka-Dziadosz ◽  
Bozena Dubielecka

SUMMARYThe genetic basis of slow growth rate and aberrations in the ciliary pattern was studied in the multi-left-marginal variant ofParaurostyla weissei. The 3:1 segregation in F2 sibling crosses and 1:1 segregation in test crosses indicate that the aberrant phenotype is controlled by a recessive allele at a single gene locus termedmlm. The phenotypic change from wild type tomlmtakes place about 5–8 cell cycles after conjugation. The study established that total conjugation inP. weisseiis a true sexual process in which meiosis, fertilization and Mendelian segregation occur.


2015 ◽  
Vol 112 (10) ◽  
pp. E1086-E1095 ◽  
Author(s):  
Amanda A. Amodeo ◽  
David Jukam ◽  
Aaron F. Straight ◽  
Jan M. Skotheim

During early development, animal embryos depend on maternally deposited RNA until zygotic genes become transcriptionally active. Before this maternal-to-zygotic transition, many species execute rapid and synchronous cell divisions without growth phases or cell cycle checkpoints. The coordinated onset of transcription, cell cycle lengthening, and cell cycle checkpoints comprise the midblastula transition (MBT). A long-standing model in the frog, Xenopus laevis, posits that MBT timing is controlled by a maternally loaded inhibitory factor that is titrated against the exponentially increasing amount of DNA. To identify MBT regulators, we developed an assay using Xenopus egg extract that recapitulates the activation of transcription only above the DNA-to-cytoplasm ratio found in embryos at the MBT. We used this system to biochemically purify factors responsible for inhibiting transcription below the threshold DNA-to-cytoplasm ratio. This unbiased approach identified histones H3 and H4 as concentration-dependent inhibitory factors. Addition or depletion of H3/H4 from the extract quantitatively shifted the amount of DNA required for transcriptional activation in vitro. Moreover, reduction of H3 protein in embryos induced premature transcriptional activation and cell cycle lengthening, and the addition of H3/H4 shortened post-MBT cell cycles. Our observations support a model for MBT regulation by DNA-based titration and suggest that depletion of free histones regulates the MBT. More broadly, our work shows how a constant concentration DNA binding molecule can effectively measure the amount of cytoplasm per genome to coordinate division, growth, and development.


Blood ◽  
2009 ◽  
Vol 114 (17) ◽  
pp. 3567-3577 ◽  
Author(s):  
Wooseok Seo ◽  
Hermann J. Ziltener

Abstract The sialomucin CD43 is highly expressed on most hematopoietic cells. In this study, we show that the CD43 ectodomain is shed from murine granulocytes, mast cells, and T cells, but not from macrophages. To study the significance of CD43 shedding, we constructed 2 CD43/34 chimeras in which the CD43 membrane-proximal or transmembrane domain was swapped with the corresponding domain from CD34 that is not shed from cells. Viability of cells that normally shed CD43 was negatively affected when forced to express either of the 2 CD43/34 chimeras, but toxicity was reduced when cells coexpressed wild-type CD43. The CD43 cytoplasmic tail (CD43ct) was found to translocate into the nucleus, and inhibition of either its nuclear translocation or its release by γ-secretase was proapoptotic. Involvement of CD43 in regulation of apoptosis is consistent with our findings that CD43ct was modified by small ubiquitin-like modifier-1 and was colocalized with promyelocytic nuclear bodies. CD43-deficient cells exhibited reduced levels of promyelocytic nuclear bodies and had increased sensitivity to apoptosis induced by growth factor withdrawal or T-regulatory cell suppression. Taken together, our data indicate an essential function of CD43 processing and nuclear localization of CD43ct in cell homeostasis and apoptosis.


2003 ◽  
Vol 23 (8) ◽  
pp. 2778-2789 ◽  
Author(s):  
Qinghu Ren ◽  
Martin A. Gorovsky

ABSTRACT Tetrahymena thermophila cells contain three forms of H2A: major H2A.1 and H2A.2, which make up ∼80% of total H2A, and a conserved variant, H2A.Z. We showed previously that acetylation of H2A.Z was essential (Q. Ren and M. A. Gorovsky, Mol. Cell 7:1329-1335, 2001). Here we used in vitro mutagenesis of lysine residues, coupled with gene replacement, to identify the sites of acetylation of the N-terminal tail of the major H2A and to analyze its function in vivo. Tetrahymena cells survived with all five acetylatable lysines replaced by arginines plus a mutation that abolished acetylation of the N-terminal serine normally found in the wild-type protein. Thus, neither posttranslational nor cotranslational acetylation of major H2A is essential. Surprisingly, the nonacetylatable N-terminal tail of the major H2A was able to replace the essential function of the acetylation of the H2A.Z N-terminal tail. Tail-swapping experiments between H2A.1 and H2A.Z revealed that the nonessential acetylation of the major H2A N-terminal tail can be made to function as an essential charge patch in place of the H2A.Z N-terminal tail and that while the pattern of acetylation of an H2A N-terminal tail is determined by the tail sequence, the effects of acetylation on viability are determined by properties of the H2A core and not those of the N-terminal tail itself.


2020 ◽  
Vol 72 (1) ◽  
pp. 214-224 ◽  
Author(s):  
Tomasz Gębarowski ◽  
Benita Wiatrak ◽  
Katarzyna Gębczak ◽  
Beata Tylińska ◽  
Kazimierz Gąsiorowski

Abstract Background The p53 protein is a transcription factor for many genes, including genes involved in inhibiting cell proliferation and inducing apoptosis in genotoxically damaged and tumor-transformed cells. In more than 55% of cases of human cancers, loss of the essential function of p53 protein is found. In numerous reports, it has been shown that small molecules (chemical compounds) can restore the suppressor function of the mutant p53 protein in tumor cells. The aim of this study was to evaluate the potential anticancer activity of three newly synthesized olivacine derivatives. Methods The study was performed using two cell lines—CCRF/CEM (containing the mutant p53 protein) and A549 (containing a non-mutant, wild-type p53 protein). The cells were incubated with olivacine derivatives for 18 h and then assays were carried out: measurement of the amount of p53 and p21 proteins, detection of apoptosis, cell cycle analysis, and rhodamine 123 accumulation assay (evaluation of P-glycoprotein inhibition). Multiple-criteria decision analysis was used to compare the anticancer activity of the tested compounds. Results Each tested compound caused the reconstitution of suppressor activity of the p53 protein in cells with the mutant protein. In addition, one of the compounds showed significant antitumor activity in both wild-type and mutant cells. For all compounds, a stronger effect on the level of the p53 protein was observed than for the reference compound—ellipticine. Conclusions The observed effects of the tested new olivacine derivatives (pyridocarbazoles) suggest that they are good candidates for new anticancer drugs.


Sign in / Sign up

Export Citation Format

Share Document