scholarly journals Molecular structure of poplar lignin obtained by p-Toluene sulfonic acid (p-TsOH) and formic acid delignification

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3186-3199
Author(s):  
Songlin Wang ◽  
Zongjia Song ◽  
Hui He ◽  
Qian Wang

Poplar wood sawdust was chemically modified and separated into fractions using a mixture of p-toluene sulfonic acid (p-TsOH) and formic acid under different conditions. The optimum conditions of poplar lignin separation were determined by single-factor experiment. The mixed acid lignin (MAL) and the solid residues were subjected to comprehensive structural characterization by Fourier-transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H-NMR), X-ray diffraction (XRD), and scanning electron microscope (SEM). At the mass ratio of 5:1 of p-TsOH and formic acid, temperature of 80 °C, acid concentration of 75%, and reaction time of 20 min, more than 80% of lignin was removed, and almost all of the cellulose was retained in the solid residue. The results indicated that the p-TsOH/formic acid achieved rapid and nearly-complete dissolution of wood lignin below the water boiling temperature by enhancing the cleavage of interunitary bonds in lignin (β-O-4′ bond) and the 4-hydroxy-3-methoxy cinnamic acid structure in the lignin.

2021 ◽  
Author(s):  
Songlin Wang ◽  
Qian Wang ◽  
Yao Kai

Abstract Cellulose nanocrystals (CNC) were first isolated from microcrystalline cellulose (MCC) by p-toluene sulfonic acid (p-TsOH) hydrolysis. Cellulose II nanocrystal (CNC II) and cellulose III nanocrystal (CNC III) were then formed by swelling the obtained cellulose I nanocrystal (CNC I) in concentrated sodium hydroxide solutions and ethylenediamine (EDA) respectively. The properties of CNC I, CNC II and CNC III were subjected to comprehensive characterization by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). The results indicated that CNC I, CNC II and CNC III obtained in this research had high crystallinity index and good thermal stability. The degradation temperatures of the resulted CNC I, CNC II and CNC III were 300 ℃, 275 ℃ and 242 ℃, respectively. No ester bonds were found in the resulted CNC. CNC prepared in this research also had large aspect ratio and high negative zeta potential.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Wenjuan Zhang ◽  
Wenhong Tian ◽  
Shihua Song ◽  
Xianren Zeng ◽  
Peng Gao ◽  
...  

Cinnamaldehyde- (CMA-) modified coal tar pitches (CTPs) are prepared in the presence of acids. In this paper, the effect of boric acid and p-toluene sulfonic acid on the pyrolysis and graphitization process of CMA-modified CTP was studied. The pyrolysis process was studied by Fourier transform infrared spectroscopy, thermogravimetric analysis and derivative thermogravimetry, and polarized-light microscopy. In addition, the graphitization process was studied by X-ray diffraction and Raman spectroscopy. The results indicate the carbon yield of CMA-modified CTP with boric acid as catalyst (B7C10) is higher than that of CMA-modified CTP with p-toluene sulfonic acid as a catalyst (P7C10). In addition, under the same experimental condition (heated at 400°C and held for 1 h), the mesophase spheres of B7C10 are more regular than those of P7C10 and the largest diameter of the mesophase spheres can reach to 40 um. Further, after the graphitization process, the graphitization degree of B7C10 is higher than that of P7C10. So, it is more effective to modify CTP with boric acid as a catalyst.


2014 ◽  
Vol 716-717 ◽  
pp. 126-129
Author(s):  
Guo Mei Xu ◽  
Tie Jun Shi

Using sweet potato starch, butanol, and dodecyl alcohol as raw materials, the alkyl indican surfactant was synthesized by two-step reactions with composite catalysts of p-toluene sulfonic acid and citric acid, the synthesis conditions were investigated through orthogonal method and the structure of the product was characterized by IR and mass spectroscopy. The weeding test was also studied by adding the appropriate proportion of alkyl indican surfactant. The results showed that the best technological conditions was: reaction took place under 120 C and last for 4 h, msweet potato starch:mn-butanol: mn-dodecanol=msp:mnb:mnd=1:2:5, the content of composite catalysts was 1.6 wt% p-toluene sulfonic acid and 10.0 wt% citric acid. The weeding test demonstrated that added 1% APG into the glyphosate could killed almost all weeds in five days and had an excellent weeding efficiency. Compared with spraying glyphosate with no APG, which could decrease the amount of glyphosate used and protect the environment.


Author(s):  
S. Alva ◽  
R. S. Utami ◽  
L. K. Shyuan ◽  
I. Puspasari ◽  
A. B. Mohammad

<p class="TRANSAffiliation"><span>Nanoparticles of the conducting polymer polypyrrole in toluene sulfonic acid (PPy/TSA) were synthesized and characterized. The polymerization was process carried out in situ using ammonium persulfate (APS) as an oxidant. The particles were synthesized by varying the dopant concentration of <em>para</em>-toluene sulfonic acid over five sulphonic acid concentrations. The main objective of this study was to examine the effect of TSA dopant concentrations on the properties of polypyrrole nanoparticles. Understanding nature and characteristics of polypyrrole/TSA nanoparticles are important in determining whether the nanoparticles have the potential to be a component in the manufacture of fuel cells. The conducting polymer particles synthesized in this study were characterized using a particle analyzer, X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), spectroscopy UV-visible (UV-vis), thermogravimetric analysis (TGA) and electrical conductivity measurement. XRD shows that the particles generated possessed an amorphous structure, as also indicated by SEM images revealing the formation of aggregated and granular composite particles. Furthermore, the FTIR peak between 1273 and 1283cm<sup>-1</sup> indicated that sulfonic acids (SO<sub>3</sub><sup>-</sup>) groups were present in the structure of PPy. The size of the PPy/TSA nanoparticles was determined to be approximately 24-51 nm, and their conductivity measured to be 1.3 x 10<sup>-1</sup> S/cm.</span></p>


2019 ◽  
Vol 16 (5) ◽  
pp. 512-521 ◽  
Author(s):  
Nidhi Rani ◽  
Randhir Singh

Background: A series of novel substituted 2-mercaptoimidazoles was synthesised efficiently and in high yields using one-pot synthesis from m-hydroxyacetophenones. Methods: The structures of the newly synthesized compounds were established, their molecular activity was investigated against some bacteria and fungi were further validated using molecular docking study. Results: Reaction of o-hydroxyphenacylbromide (2) with substituted aniline and KSCN, in the presence of catalyst p-toluene sulfonic acid afforded 4(a-r) in good yield. The structure of compounds (4a-r) was confirmed by IR, NMR and MS. Conclusion: The compounds exhibited excellent antimicrobial potency against the tested microorganism.


2011 ◽  
Vol 314-316 ◽  
pp. 273-278
Author(s):  
Yu Hua Dong ◽  
Ke Ren ◽  
Qiong Zhou

Linear low density polyethylene (LLDPE) was chemically modified with grafting maleic anhydride (MAH) monomer on its backbone by melting blending. Nano-particles SiO2 was modified by cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and anionic surfactant sulfosalicylic acid (SSA) and added to PE coating respectively. Measurement of membrane potential showed that the coating containing modified SiO2 nano-particles had characteristic of ion selectivity. The properties of the different coatings were investigated according to relative industrial standards. Experimental results indicated that PE coating with ion selectivity had better performances, such as adhesion strength, cathodic disbonding and anti-corrosion, than those of coating without ion selectivity. Crystal structure of the coatings before and after alkali corrosion was characterized by Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD). Structure of the coating without ion selectivity was damaged by NaOH alkali solution, causing mechanical properties being decreased. And the structure of the ion selective coatings was not affected.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Loreana C. Gallo ◽  
Noelia L. Gonzalez Vidal ◽  
Fabio F. Ferreira ◽  
María V. Ramírez-Rigo

Abstract Background Sulbactam pivoxil is an irreversible β-lactamase inhibitor that can be used with β-lactam antibiotics to improve antibacterial therapy by the oral route. Relevant properties of this drug for pharmaceutical manufacturing are not available in the open literature. In this work, a solid-state characterization of sulbactam pivoxil at the molecular, particle, and bulk levels was performed. Results Particles exhibited a mean diameter of about 350 μm, irregular shape crystals, and good flow properties. This work presents for the first time the crystal structure of this β-lactamase inhibitor obtained by X-ray diffraction analysis. Fourier-transform infrared results showed the characteristic bands of aliphatic hydrocarbons and ester groups. The differential scanning calorimetry curve exhibited a sharp endothermic peak at 109 °C corresponding to sulbactam pivoxil melting. The thermogravimetric curve revealed a mass loss at 184 °C associated with a decomposition process. This powder showed a moisture content of 0.34% and a water activity of 0.463. Potential interactions between sulbactam pivoxil and common pharmaceutical excipients were evaluated by thermal analysis. The endothermic peak and the enthalpies of melting were preserved in almost all the analyzed mixtures. Conclusion The powder was constituted by micro-sized crystals of sulbactam pivoxil that had suitable physicochemical properties for processing in controlled humidity environments. Thermal analyses suggested that sulbactam pivoxil is compatible with most of the evaluated excipients. The information obtained in the present study is relevant for the development, manufacturing, and storage of formulations that include sulbactam pivoxil.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Xiao-chuan Jia ◽  
Jing Li ◽  
Yu Ding ◽  
Bin Zhang ◽  
Na Wang ◽  
...  

A robust, facile, and solvent-free route for the three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones in the presence of a catalytic amount ofp-toluene sulfonic acid utilizing grinding has been developed. Short reaction time, simple operation, and high yields are the advantages of this protocol.


2015 ◽  
Vol 638 ◽  
pp. 67-72
Author(s):  
Ana Maria Salantiu ◽  
Florin Popa ◽  
Petru Pascuta ◽  
Olga Soritau ◽  
Noemi Dirzu ◽  
...  

This work aims to investigate the influence of surface conditioning of porous Ti for enhancing its biological activity, as assessed by in vitro stem cell testing. Porous Ti samples with an average porosity of 32% were processed by Powder Metallurgy with dextrin as a space holder. The samples were subjected to H2O2 treatment to form an enhanced TiO2 film, followed by a heat treatment at 400°C and 600°C aiming to the crystallization of the as-formed amorphous titanium oxide. Samples characterization was performed by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR) and X-Ray Diffraction (XRD). The treated surfaces revealed to be made of both anatase and rutile TiO2, with groove–shaped structure and cracks on the surface of the TiO2 film. The intrinsic biocompatibility of the chemically modified porous Ti surfaces was assessed in vitro. In our cell culture tests, stem cells were found to attach and proliferate better on the chemically treated Ti surfaces compared to the control untreated Ti surfaces.


Sign in / Sign up

Export Citation Format

Share Document